Skip to main content
Log in

Deep brain stimulation of the subthalamic nucleus in severe Parkinson’s disease: relationships between dual-contact topographic setting and 1-year worsening of speech and gait

  • Original Article
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Subthalamic nucleus (STN) deep brain stimulation (DBS) alleviates severe motor fluctuations and dyskinesia in Parkinson’s disease, but may result in speech and gait disorders. Among the suspected or demonstrated causes of these adverse effects, we focused on the topography of contact balance (CB; individual, right and left relative dual positions), a scantly studied topic, analyzing the relationships between symmetric or non-symmetric settings, and the worsening of these signs.

Method

An observational monocentric study was conducted on a series of 92 patients after ethical approval. CB was specified by longitudinal and transversal positions and relation to the STN (CB sub-aspects) and totalized at the patient level (patient CB). CB was deemed symmetric when the two contacts were at the same locations relative to the STN. CB was deemed asymmetric when at least one sub-aspect differed in the patient CB. Baseline and 1-year characteristics were routinely collected: (i) general, namely, Unified Parkinson’s Disease Rating Scores (UPDRS), II, III motor and IV, daily levodopa equivalent doses, and Parkinson’s Disease Questionnaire of Quality of Life (PDQ39) scores; (ii) specific, namely scores for speech (II-5 and III-18) and axial signs (II-14, III-28, III-29, and III-30). Only significant correlations were considered (p < 0.05).

Results

Baseline characteristics were comparable (symmetric versus asymmetric). CB settings were related to deteriorations of speech and axial signs: communication PDQ39 and UPDRS speech and gait scores worsened exclusively with symmetric settings; the most influential CB sub-aspect was symmetric longitudinal position.

Conclusion

Our findings suggest that avoiding symmetric CB settings, whether by electrode positioning or shaping of electric fields, could reduce worsening of speech and gait.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aldridge D, Theodoros D, Angwin A, Vogel AP (2016) Speech outcomes in Parkinson’s disease after subthalamic nucleus deep brain stimulation: a systematic review. Parkinsonism Relat Disord 33:3–11

    PubMed  Google Scholar 

  2. Alvarez L (2005) Bilateral subthalamotomy in Parkinson’s disease: initial and long-term response. Brain 128(3):570–583

    CAS  PubMed  Google Scholar 

  3. Antonini A, Moro E, Godeiro C, Reichmann H (2018) Medical and surgical management of advanced Parkinson’s disease. Mov Disord 33(6):900–908

    PubMed  Google Scholar 

  4. Askari A, Greif TR, Lam J, Maher AC, Persad CC, Patil PG (2022) Decline of verbal fluency with lateral superior frontal gyrus penetration in subthalamic nucleus deep brain stimulation for Parkinson disease. J Neurosurg 137(3):729–734

    Google Scholar 

  5. Barbe MT, Tonder L, Krack P et al (2020) Deep brain stimulation for freezing of gait in Parkinson’s disease with early motor complications. Mov Disord 35(1):82–90

    PubMed  Google Scholar 

  6. Bender R, Lange S (2001) Adjusting for multiple testing—when and how? J Clin Epidemiol 54(4):343–349

    CAS  PubMed  Google Scholar 

  7. Bohnen NI, Yarnall AJ, Weil RS, Moro E, Moehle MS, Borghammer P, Bedard M-A, Albin RL (2022) Cholinergic system changes in Parkinson’s disease: emerging therapeutic approaches. Lancet Neurol 21(4):381–392

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bove F, Mulas D, Cavallieri F et al (2021) Long-term outcomes (15 years) after subthalamic nucleus deep brain stimulation in patients with Parkinson disease. Neurology 97(3):1212–1246

    Google Scholar 

  9. Bruno S, Nikolov P, Hartmann CJ, Trenado C, Slotty PJ, Vesper J, Schnitzler A, Groiss SJ (2021) Directional deep brain stimulation of the thalamic ventral intermediate area for essential tremor increases therapeutic window. Neuromodulation 24(2):343–352

    PubMed  Google Scholar 

  10. Butson CR, Cooper SE, Henderson JM, McIntyre CC (2007) Patient-specific analysis of the volume of tissue activated during deep brain stimulation. Neuroimage 34(2):661–670

    PubMed  Google Scholar 

  11. Büttner C, Maack M, Janitzky K, Witt K (2019) The evolution of quality of life after subthalamic stimulation for Parkinson’s disease: a meta-analysis. Mov Disord Clin Pract 6(7):521–530

    PubMed  PubMed Central  Google Scholar 

  12. Cavallieri F, Budriesi C, Gessani A, Contardi S, Fioravanti V, Menozzi E, Pinto S, Moro E, Valzania F, Antonelli F (2021) Dopaminergic treatment effects on dysarthric speech: acoustic analysis in a cohort of patients with advanced Parkinson’s disease. Front Neurol 11(Article 616062):1–7

    Google Scholar 

  13. Chen CC, Brücke C, Kempf F, Kupsch A, Lu CS, Lee ST, Tisch S, Limousin P, Hariz M, Brown P (2006) Deep brain stimulation of the subthalamic nucleus: a two-edged sword. Curr Biol 16(22):R952–R953

    CAS  PubMed  Google Scholar 

  14. Chenausky K, MacAuslan J, Goldhor R (2011) Acoustic analysis of PD speech. Parkinsons Dis 2011:1–13

    Google Scholar 

  15. Chung SJ, Jeon SR, Kim SR, Sung YH, Lee MC (2006) Bilateral effects of unilateral subthalamic nucleus deep brain stimulation in advanced Parkinson’s disease. Eur Neurol 56(2):127–132

    PubMed  Google Scholar 

  16. Collomb-Clerc A, Welter M-L (2015) Effects of deep brain stimulation on balance and gait in patients with Parkinson’s disease: a systematic neurophysiological review. Neurophysiologie Clinique/Clin Neurophysiol 45(4–5):371–388

    CAS  Google Scholar 

  17. Coste J, Ouchchane L, Sarry L, Derost P, Durif F, Gabrillargues J, Hemm S, Lemaire JJ (2009) New electrophysiological mapping combined with MRI in Parkinsonian’s subthalamic region. Eur J Neurosci 29(8):1627–1633

    CAS  PubMed  Google Scholar 

  18. De Bie RMA, Schuurman PR, Esselink RAJ, Bosch DA, Speelman JD (2002) Bilateral pallidotomy in Parkinson’s disease: a retrospective study. Mov Disord 17(3):533–538

    PubMed  Google Scholar 

  19. de Chazeron I, Pereira B, Chereau-Boudet I, Durif F, Lemaire JJ, Brousse G, Ulla M, Derost P, Debilly B, Llorca PM (2016) Impact of localisation of deep brain stimulation electrodes on motor and neurobehavioural outcomes in Parkinson’s disease. J Neurol Neurosurg Psychiatr 87(7):758–766

    Google Scholar 

  20. de Roquemaurel A, Wirth T, Vijiaratnam N, Ferreira F, Zrinzo L, Akram H, Foltynie T, Limousin P (2021) Stimulation sweet spot in subthalamic deep brain stimulation – myth or reality? A critical review of literature. Stereotact Funct Neurosurg 99(5):425–442

    PubMed  Google Scholar 

  21. Derost P-P, Ouchchane L, Morand D, Ulla M, Llorca P-M, Barget M, Debilly B, Lemaire J-J, Durif F (2007) Is DBS-STN appropriate to treat severe Parkinson disease in an elderly population? Neurology 68(17):1345–1355

    PubMed  Google Scholar 

  22. Fabbri M, Guimarães I, Cardoso R et al (2017) Speech and voice response to a levodopa challenge in late-stage Parkinson’s disease. Front Neurol 8(Article 432):1–7

    Google Scholar 

  23. Feise RJ (2002) Do multiple outcome measures require p-value adjustment? BMC Med Res Methodol 2(1):8

    PubMed  PubMed Central  Google Scholar 

  24. Fenoy AJ, McHenry MA, Schiess MC (2017) Speech changes induced by deep brain stimulation of the subthalamic nucleus in Parkinson disease: involvement of the dentatorubrothalamic tract. J Neurosurg 126(6):2017–2027

    PubMed  Google Scholar 

  25. Florence G, Sameshima K, Fonoff ET, Hamani C (2016) Deep brain stimulation: more complex than the inhibition of cells and excitation of fibers. Neuroscientist 22(4):332–345

    CAS  PubMed  Google Scholar 

  26. Fluchere F, Witjas T, Eusebio A, Bruder N, Giorgi R, Leveque M, Peragut J-C, Azulay J-P, Regis J (2014) Controlled general anaesthesia for subthalamic nucleus stimulation in Parkinson’s disease. J Neurol Neurosurg Psychiatry 85(10):1167–1173

    CAS  PubMed  Google Scholar 

  27. Follett KA, Weaver FM, Stern M et al (2010) Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med 362(22):2077–2091

    CAS  PubMed  Google Scholar 

  28. Fox SH, Katzenschlager R, Lim S-Y, Barton B, de Bie RMA, Seppi K, Coelho M, Sampaio C (2018) International Parkinson and movement disorder society evidence-based medicine review: update on treatments for the motor symptoms of Parkinson’s disease. Mov Disord 33(8):1248–1266

    CAS  PubMed  Google Scholar 

  29. Fraix V, Houeto J-L, Lagrange C et al (2006) Clinical and economic results of bilateral subthalamic nucleus stimulation in Parkinson’s disease. J Neurol Neurosurg Psychiatr 77(4):443–449

    CAS  Google Scholar 

  30. Garcia-Garcia D, Guridi J, Toledo JB, Alegre M, Obeso JA, Rodríguez-Oroz MC (2016) Stimulation sites in the subthalamic nucleus and clinical improvement in Parkinson’s disease: a new approach for active contact localization. J Neurosurg 1–12

  31. Gonzalezballester M (2002) Estimation of the partial volume effect in MRI. Med Image Anal 6(4):389–405

    Google Scholar 

  32. Gonzalez-Escamilla G, Koirala N, Bange M, Glaser M, Pintea B, Dresel C, Deuschl G, Muthuraman M, Groppa S (2022) Deciphering the network effects of deep brain stimulation in Parkinson’s disease. Neurol Ther 11:265–282

    PubMed  PubMed Central  Google Scholar 

  33. Guiot G, Derome P, Trigo JC (1967) Intention tremor: the best indication for stereotaxic surgery. Presse Med 75(49):2513–2518

    CAS  Google Scholar 

  34. Harmsen IE, Elias GJB, Beyn ME, Boutet A, Pancholi A, Germann J, Mansouri A, Lozano CS, Lozano AM (2020) Clinical trials for deep brain stimulation: current state of affairs. Brain Stimul 13(2):378–385

    PubMed  Google Scholar 

  35. Haynes WIA, Haber SN (2013) The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for Basal Ganglia models and deep brain stimulation. J Neurosci 33(11):4804–4814

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hemm S, Coste J, Gabrillargues J et al (2009) Contact position analysis of deep brain stimulation electrodes on post-operative CT images. Acta Neurochir (Wien) 151(7):823–829 (discussion 829)

    PubMed  Google Scholar 

  37. Holiga Š, Mueller K, Möller HE, Urgošík D, Růžička E, Schroeter ML, Jech R (2015) Resting-state functional magnetic resonance imaging of the subthalamic microlesion and stimulation effects in Parkinson’s disease: Indications of a principal role of the brainstem. Neuroimage Clin 9:264–274

    PubMed  PubMed Central  Google Scholar 

  38. Huang L-C, Chen L-G, Wu P-A, Pang C-Y, Lin S-Z, Tsai S-T, Chen S-Y (2022) Effect of deep brain stimulation on brain network and white matter integrity in Parkinson’s disease. CNS Neurosci Ther 28(1):92–104

    CAS  PubMed  Google Scholar 

  39. Jiang J-L, Chen S-Y, Tsai S-T (2019) Quality of life in patients with Parkinson’s disease after subthalamic stimulation: an observational cohort study for outcome prediction. Ci Ji Yi Xue Za Zhi 31(2):107–112

    PubMed  Google Scholar 

  40. Jourdain VA, Schechtmann G, Di Paolo T (2014) Subthalamotomy in the treatment of Parkinson’s disease: clinical aspects and mechanisms of action. J Neurosurg 120(1):140–151

    PubMed  Google Scholar 

  41. Karachi C, Yelnik J, Tandé D, Tremblay L, Hirsch EC, François C (2005) The pallidosubthalamic projection: an anatomical substrate for nonmotor functions of the subthalamic nucleus in primates. Mov Disord 20(2):172–180

    PubMed  Google Scholar 

  42. Kim MJ, Chang KW, Park SH, Chang WS, Jung HH, Chang JW (2021) Stimulation-induced side effects of deep brain stimulation in the ventralis intermedius and posterior subthalamic area for essential tremor. Front Neurol 12:678592

    PubMed  PubMed Central  Google Scholar 

  43. Kim R, Kim H-J, Shin C, Park H, Kim A, Paek SH, Jeon B (2019) Long-term effect of subthalamic nucleus deep brain stimulation on freezing of gait in Parkinson’s disease. J Neurosurg 131(6):1797–1804

    CAS  PubMed  Google Scholar 

  44. Kluin KJ, Mossner JM, Costello JT, Chou KL, Patil PG (2022) Motor speech effects in subthalamic deep brain stimulation for Parkinson’s disease. J Neurosurg 137(3):722–728

    Google Scholar 

  45. Knight EJ, Testini P, Min H-K et al (2015) Motor and nonmotor circuitry activation induced by subthalamic nucleus deep brain stimulation in patients with Parkinson disease: intraoperative functional magnetic resonance imaging for deep brain stimulation. Mayo Clin Proc 90(6):773–785

    PubMed  Google Scholar 

  46. Knowles T, Adams SG, Jog M (2021) Speech rate mediated vowel and stop voicing distinctiveness in Parkinson’s disease. J Speech Lang Hear Res 64(11):4096–4123

    PubMed  Google Scholar 

  47. Krack P, Batir A, Van Blercom N et al (2003) Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 349(20):1925–1934

    CAS  PubMed  Google Scholar 

  48. Lemaire J-J, Coste J, Ouchchane L et al (2007) Brain mapping in stereotactic surgery: a brief overview from the probabilistic targeting to the patient-based anatomic mapping. Neuroimage 37(Suppl 1):S109-115

    PubMed  Google Scholar 

  49. Lemaire J-J, De Salles A, Coll G, El Ouadih Y, Chaix R, Coste J, Durif F, Makris N, Kikinis R (2019) MRI atlas of the human deep brain. Front Neurol. https://doi.org/10.3389/fneur.2019.00851

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lemaire J-J, Pereira B, Derost P et al (2016) Subthalamus stimulation in Parkinson disease: Accounting for the bilaterality of contacts. Surg Neurol Int 7(Suppl 35):S837–S847

    PubMed  PubMed Central  Google Scholar 

  51. Lemaire J, Sakka L, Ouchchane L, Caire F, Gabrillargues J, Bonny J (2010) Anatomy of the human thalamus based on spontaneous contrast and microscopic voxels in high-field magnetic resonance imaging. Neurosurgery 66(3 Suppl Operative):161–172

    PubMed  Google Scholar 

  52. Lezcano E, Gómez-Esteban JC, Tijero B et al (2016) Long-term impact on quality of life of subthalamic nucleus stimulation in Parkinson’s disease. J Neurol 263(5):895–905

    PubMed  Google Scholar 

  53. Lhommée E, Wojtecki L, Czernecki V et al (2018) Behavioural outcomes of subthalamic stimulation and medical therapy versus medical therapy alone for Parkinson’s disease with early motor complications (EARLYSTIM trial): secondary analysis of an open-label randomised trial. Lancet Neurol 17(3):223–231

    PubMed  Google Scholar 

  54. Limousin P, Foltynie T (2019) Long-term outcomes of deep brain stimulation in Parkinson disease. Nat Rev Neurol 15(4):234–242

    PubMed  Google Scholar 

  55. Lin Z, Zhang C, Li D, Sun B (2021) Lateralized effects of deep brain stimulation in Parkinson’s disease: evidence and controversies. npj Parkinsons Dis 7(1):64

    PubMed  PubMed Central  Google Scholar 

  56. Lizarraga KJ, Jagid JR, Luca CC (2016) Comparative effects of unilateral and bilateral subthalamic nucleus deep brain stimulation on gait kinematics in Parkinson’s disease: a randomized, blinded study. J Neurol 263(8):1652–1656

    PubMed  Google Scholar 

  57. Lozano AM, Lipsman N, Bergman H et al (2019) Deep brain stimulation: current challenges and future directions. Nat Rev Neurol 15(3):148–160

    PubMed  PubMed Central  Google Scholar 

  58. Mueller K, Jech R, Růžička F et al (2018) Brain connectivity changes when comparing effects of subthalamic deep brain stimulation with levodopa treatment in Parkinson’s disease. Neuroimage Clin 19:1025–1035

    PubMed  PubMed Central  Google Scholar 

  59. Ni Z, Kim SJ, Phielipp N et al (2018) Pallidal deep brain stimulation modulates cortical excitability and plasticity. Ann Neurol 83(2):352–362

    PubMed  Google Scholar 

  60. Obeso JA, Rodríguez-Oroz MC, Benitez-Temino B, Blesa FJ, Guridi J, Marin C, Rodriguez M (2008) Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov Disord 23(Suppl 3):S548-559

    PubMed  Google Scholar 

  61. Okun MS, Gallo BV, Mandybur G et al (2012) Subthalamic deep brain stimulation with a constant-current device in Parkinson’s disease: an open-label randomised controlled trial. Lancet Neurol 11(2):140–149

    PubMed  Google Scholar 

  62. Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 20(1):91–127

    CAS  PubMed  Google Scholar 

  63. Pieruccini-Faria F, Ehgoetz Martens K, Silveira C, Jones J (2015) Side of basal ganglia degeneration influences freezing of gait in Parkinson’s disease. Behav Neurosci 129(2):214–218

    PubMed  Google Scholar 

  64. Piña-Fuentes D, van Dijk JMC, van Zijl JC, Moes HR, van Laar T, Oterdoom DLM, Little S, Brown P, Beudel M (2020) Acute effects of adaptive deep brain stimulation in Parkinson’s disease. Brain Stimul 13(6):1507–1516

    PubMed  PubMed Central  Google Scholar 

  65. Prenger MTM, Madray R, Van Hedger K, Anello M, MacDonald PA (2020) Social symptoms of Parkinson’s disease. Parkinsons Dis 2020:1–10

    Google Scholar 

  66. Prent N, Potters WV, Boon LI, Caan MWA, de Bie RMA, van den Munckhof P, Schuurman PR, van Rootselaar A-F (2019) Distance to white matter tracts is associated with deep brain stimulation motor outcome in Parkinson’s disease. J Neurosurg 133(2):433–442

    Google Scholar 

  67. Rodriguez-Rojas R, Pineda-Pardo JA, Mañez-Miro J, Sanchez-Turel A, Martinez-Fernandez R, Del Alamo M, DeLong M, Obeso JA (2022) Functional topography of the human subthalamic nucleus: relevance for subthalamotomy in Parkinson’s disease. Mov Disord 37(2):279–290

    PubMed  Google Scholar 

  68. Rossi M, Bruno V, Arena J, Cammarota Á, Merello M (2018) Challenges in PD patient management after DBS: a pragmatic review. Mov Disord Clin Pract 5(3):246–254

    PubMed  PubMed Central  Google Scholar 

  69. Rothman KJ (1990) No adjustments are needed for multiple comparisons. Epidemiology 1(1):43–46

    CAS  PubMed  Google Scholar 

  70. Sandström L, Hägglund P, Johansson L, Blomstedt P, Karlsson F (2015) Speech intelligibility in Parkinson’s disease patients with zona incerta deep brain stimulation. Brain Behav 5(10):e00394

    PubMed  PubMed Central  Google Scholar 

  71. Sanger TD (2018) A computational model of deep-brain stimulation for acquired dystonia in children. Front Comput Neurosci 12:77

    PubMed  PubMed Central  Google Scholar 

  72. Schnitzler A, Mir P, Brodsky MA et al (2022) Directional deep brain stimulation for Parkinson’s disease: results of an international crossover study with randomized, double-blind primary endpoint. Neuromodulation: Technol Neural Interface 25(6):817–828

    Google Scholar 

  73. Schuepbach WMM, Rau J, Knudsen K et al (2013) Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med 368(7):610–622

    CAS  PubMed  Google Scholar 

  74. Shen L, Jiang C, Hubbard CS et al (2020) Subthalamic nucleus deep brain stimulation modulates 2 distinct neurocircuits. Ann Neurol 88(6):1178–1193

    PubMed  PubMed Central  Google Scholar 

  75. Stefani A, Cerroni R, Mazzone P, Liguori C, Di Giovanni G, Pierantozzi M, Galati S (2019) Mechanisms of action underlying the efficacy of deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: central role of disease severity. Eur J Neurosci 49(6):805–816

    PubMed  Google Scholar 

  76. Strotzer QD, Kohl Z, Anthofer JM, Faltermeier R, Schmidt NO, Torka E, Greenlee MW, Fellner C, Schlaier JR, Beer AL (2022) Structural connectivity patterns of side effects induced by subthalamic deep brain stimulation for Parkinson’s disease. Brain Connect 12:brain.2021.0051

    Google Scholar 

  77. Tanaka Y, Tsuboi T, Watanabe H et al (2020) Longitudinal speech change after subthalamic nucleus deep brain stimulation in Parkinson’s disease patients: a 2-year prospective study. J Parkinsons Dis 10(1):131–140

    PubMed  Google Scholar 

  78. Thobois S, Ardouin C, Lhommee E et al (2010) Non-motor dopamine withdrawal syndrome after surgery for Parkinson’s disease: predictors and underlying mesolimbic denervation. Brain 133(4):1111–1127

    PubMed  Google Scholar 

  79. Timmermann L, Jain R, Chen L et al (2015) Multiple-source current steering in subthalamic nucleus deep brain stimulation for Parkinson’s disease (the VANTAGE study): a non-randomised, prospective, multicentre, open-label study. Lancet Neurol 14(7):693–701

    PubMed  Google Scholar 

  80. Tir M, Devos D, Blond S et al (2007) Exhaustive, one-year follow-up of subthalamic nucleus deep brain stimulation in a large, single-center cohort of Parkinsonian patients. Neurosurgery 61(2):297–304 (discussion 304-305)

    PubMed  Google Scholar 

  81. Tripoliti E, Limousin P, Foltynie T, Candelario J, Aviles-Olmos I, Hariz MI, Zrinzo L (2014) Predictive factors of speech intelligibility following subthalamic nucleus stimulation in consecutive patients with Parkinson’s disease: speech intelligibility after STN-DBS. Mov Disord 29(4):532–538

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Tripoliti E, Zrinzo L, Martinez-Torres I et al (2011) Effects of subthalamic stimulation on speech of consecutive patients with Parkinson disease. Neurology 76(1):80–86

    CAS  PubMed  Google Scholar 

  83. van Hartevelt TJ, Cabral J, Deco G, Møller A, Green AL, Aziz TZ, Kringelbach ML (2014) Neural plasticity in human brain connectivity: the effects of long term deep brain stimulation of the subthalamic nucleus in Parkinson’s disease. PLoS ONE 9(1):e86496

    PubMed  PubMed Central  Google Scholar 

  84. Vizcarra JA, Situ-Kcomt M, Artusi CA, Duker AP, Lopiano L, Okun MS, Espay AJ, Merola A (2019) Subthalamic deep brain stimulation and levodopa in Parkinson’s disease: a meta-analysis of combined effects. J Neurol 266(2):289–297

    CAS  PubMed  Google Scholar 

  85. Vu TC, Nutt JG, Holford NHG (2012) Progression of motor and nonmotor features of Parkinson’s disease and their response to treatment. Br J Clin Pharmacol 74(2):267–283

    PubMed  PubMed Central  Google Scholar 

  86. Wang J-W, Zhang Y-Q, Zhang X-H, Wang Y-P, Li J-P, Li Y-J (2017) Deep brain stimulation of pedunculopontine nucleus for postural instability and gait disorder after Parkinson disease: a meta-analysis of individual patient data. World Neurosurg 102:72–78

    PubMed  Google Scholar 

  87. Weintraub D, Duda JE, Carlson K, Luo P, Sagher O, Stern M, Follett KA, Reda D, Weaver FM (2013) Suicide ideation and behaviours after STN and GPi DBS surgery for Parkinson’s disease: results from a randomised, controlled trial. J Neurol Neurosurg Psychiatry 84(10):1113–1118

    PubMed  Google Scholar 

  88. Welter M-L, Schüpbach M, Czernecki V et al (2014) Optimal target localization for subthalamic stimulation in patients with Parkinson disease. Neurology 82(15):1352–1361

    PubMed  PubMed Central  Google Scholar 

  89. Williams A, Gill S, Varma T et al (2010) Deep brain stimulation plus best medical therapy versus best medical therapy alone for advanced Parkinson’s disease (PD SURG trial): a randomised, open-label trial. Lancet Neurol 9(6):581–591

    PubMed  PubMed Central  Google Scholar 

  90. Witt K, Granert O, Daniels C, Volkmann J, Falk D, van Eimeren T, Deuschl G (2013) Relation of lead trajectory and electrode position to neuropsychological outcomes of subthalamic neurostimulation in Parkinson’s disease: results from a randomized trial. Brain 136(Pt 7):2109–2119

    PubMed  Google Scholar 

  91. Xie T, Kang UJ, Warnke P (2012) Effect of stimulation frequency on immediate freezing of gait in newly activated STN DBS in Parkinson’s disease. J Neurol Neurosurg Psychiatry 83(10):1015–1017

    PubMed  Google Scholar 

  92. Yamamoto T, Uchiyama T, Higuchi Y, Asahina M, Hirano S, Yamanaka Y, Weibing L, Kuwabara S (2017) Long term follow-up on quality of life and its relationship to motor and cognitive functions in Parkinson’s disease after deep brain stimulation. J Neurol Sci 379:18–21

    PubMed  Google Scholar 

  93. Zerroug A, Gabrillargues J, Coll G et al (2016) Personalized mapping of the deep brain with a white matter attenuated inversion recovery (WAIR) sequence at 1.5-tesla: experience based on a series of 156 patients. Neurochirurgie 62(4):183–9

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Vivien Mendes-Martins (Annecy, France), Dr. François Vassal (Saint-Etienne, France), Dr. François Caire (Limoges, France), Dr. Denys Fontaine (Nice, France), and Dr. Simone Hemm-Ode (Basel, Switzerland), for advice at the start of the study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, JJL, YEO, AM; methodology, BP, JJL, YEO; validation, YEO, ML, DM, JJL; formal analysis, JJL, YEO, BP; investigation, YEO, AM, ML, BD, PD, DM, FD, JJL; resources, YEO, BC, AS, JC, AM, BD, PD, JJL; data curation, YEO, DM, JC, FD; writing—original draft preparation, JJL, YEO, AM; writing-review and editing, YEO, AM, BP, ML, BC, JC, AS, RC, BD, PD, FD, JJL; visualization, JJL, YEO, BP; supervision, JJL; project administration, BP; All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jean-Jacques Lemaire.

Ethics declarations

Institutional review board statement

The study was conducted in accordance with the Declaration of Helsinki and approved by the Ethics Committee: Ethical approval 2020/CE103, South-East VI; agreement approved March 3, 2021.

Informed consent statement

Informed consent was obtained from all the subjects involved in the study, or their representative.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Comments

Although deterioration of speech and gait occurring in Parkinson disease (PD) patients over time is a well-known phenomenon; it occurs with or without deep brain stimulation (DBS) surgery and is frequently observed even in patients whose cardinal PD symptoms improve after surgery. Higher incidence of speech and gait worsening after bilateral surgical interventions has been known for decades, but the connection of this phenomenon to specific electrode contact locations, and especially their symmetry, remains unclear. The authors of this large cohort study make a strong argument that symmetricity of contact may be contributing, or directly causing, deterioration of axial issues and speech, but at the same time notice that this may occur with remarkable improvement in other PD symptoms. The question therefore remains if the intentional placement of DBS electrodes in asymmetric locations would eliminate negative effects on speech and gait while maintaining high efficacy for other motor PD manifestations, and whether quality of life in operated PD patients will be higher or lower with alternative electrode setups. It would probably be naïve to expect a panacea-like surgical intervention that would cure a complex neurodegenerative disorder with a simple delivery of electrical impulses, but it is definitely worth trying when it comes to optimization of our surgical approaches and technical nuances. I must admit that I never paid attention to intentional or unintentional symmetry of my implanted DBS electrodes; after reading this study, I would start doing it now.

Konstantin Slavin,

Chicago, USA.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 522 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Ouadih, Y., Marques, A., Pereira, B. et al. Deep brain stimulation of the subthalamic nucleus in severe Parkinson’s disease: relationships between dual-contact topographic setting and 1-year worsening of speech and gait. Acta Neurochir 165, 3927–3941 (2023). https://doi.org/10.1007/s00701-023-05843-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-023-05843-9

Keywords

Navigation