Skip to main content
Log in

Glial fibrillary acidic protein is a robust biomarker in cerebrospinal fluid and peripheral blood after traumatic spinal cord injury: a prospective pilot study

  • Original Article - Spine trauma
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Purpose

Biochemical biomarkers to determine the injury severity and the potential for functional recovery of traumatic spinal cord injury (TSCI) are highly warranted; however, it remains to be clarified whether cerebrospinal fluid (CSF) or peripheral blood (PB) is the ideal sample media. This study aims to measure and compare biomarker concentrations in CSF and PB and to explore associations between biomarker concentrations and injury severity, i.e., American Spinal Injury Association (ASIA) Impairment Scale (AIS) grade, and biomarker concentrations and clinical outcome, i.e., AIS grade improvement and Spinal Cord Independent Measure version III (SCIM-III) score.

Methods

From 2018 to 2020, we conducted a single-center prospective pilot study of TSCI patients (n=15) and healthy controls (n=15). Sample collection and clinical outcome assessment were performed at median 13 h [IQR: 19], 9 days [IQR: 2], and 148 days [IQR: 49] after TSCI. Concentrations of neuron-specific enolase (NSE); glial fibrillary acid protein (GFAP); neurofilament light chain (NfL); interferon-γ (IFN-γ); interleukin (IL)-1ß, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, and IL-13; and tumor necrosis factor α (TNF-α) were measured and associated to clinical outcomes.

Results

The biomarker concentrations were higher in CSF than PB. CSF concentrations of GFAP, NSE, IFN-y, TNF-a, IL-2, IL-12p70, IL-4, IL-10, and IL-13 and PB concentrations of GFAP and IFN-y were significantly associated with AIS grade, but not with AIS grade improvement or SCIM-III score.

Conclusions

Our results support GFAP as a potential diagnostic biomarker that may be measured in CSF as well as PB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abdelhak A, Foschi M, Abu-Rumeileh S et al (2022) Blood GFAP as an emerging biomarker in brain and spinal cord disorders. Nat Rev Neurol. https://doi.org/10.1038/s41582-021-00616-3

    Article  PubMed  Google Scholar 

  2. Ahadi R, Khodagholi F, Daneshi A, Vafaei A, Mafi AA, Jorjani M (2015) Diagnostic value of serum levels of GFAP, pNF-H, and NSE compared with clinical findings in severity assessment of human traumatic spinal cord injury. Spine (Phila Pa 1976) 40(14):E823–E830

  3. Albayar AA, Roche A, Swiatkowski P, Antar S, Ouda N, Emara E, Smith DH, Ozturk AK, Awad BI (2019) Biomarkers in spinal cord injury: prognostic insights and future potentials. Front Neurol. https://doi.org/10.3389/fneur.2019.00027

    Article  PubMed  PubMed Central  Google Scholar 

  4. Altmann P, Leutmezer F, Zach H et al (2020) Serum neurofilament light chain withstands delayed freezing and repeated thawing. Sci Rep 10(1):1–8

    Article  Google Scholar 

  5. Anderson KIMD (2004) Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma 21(10):1371–1383

    Article  PubMed  Google Scholar 

  6. Biglari B, Swing T, Child C, Büchler A, Westhauser F, Bruckner T, Ferbert T, Jürgen Gerner H, Moghaddam A (2015) A pilot study on temporal changes in IL-1β and TNF-α serum levels after spinal cord injury: the serum level of TNF-α in acute SCI patients as a possible marker for neurological remission. Spinal Cord 53(7):510–514

    Article  CAS  PubMed  Google Scholar 

  7. Cao F, Yang X, feng, Liu W guo, Hu W wei, Li G, Zheng X jue, Shen F, Zhao X qun, Lv S ting, (2008) Elevation of neuron-specific enolase and S-100β protein level in experimental acute spinal cord injury. J Clin Neurosci 15(5):541–544

    Article  CAS  PubMed  Google Scholar 

  8. Capirossi R, Piunti B, Fernández M, Maietti E, Rucci P, Negrini S, Giovannini T, Kiekens C, Calzà L (2020) Early CSF biomarkers and late functional outcomes in spinal cord injury: a pilot study. Int J Mol Sci 21(23):1–14

    Article  Google Scholar 

  9. Casha S, Rice T, Stirling DP, Silva C, Gnanapavan S, Giovannoni G, John Hurlbert R, Wee Yong V (2018) Cerebrospinal fluid biomarkers in human spinal cord injury from a phase II minocycline trial. J Neurotrauma 35(16):1918–1928

    Article  PubMed  Google Scholar 

  10. Casmiro M, Maitan S, De Pasquale F, Cova V, Scarpa E, Vignatelli L (2005) Cerebrospinal fluid and serum neuron-specific enolase concentrations in a normal population. Eur J Neurol 12(5):369–374

    Article  CAS  PubMed  Google Scholar 

  11. Dalkilic T, Fallah N, Noonan VK et al (2018) Predicting injury severity and neurological recovery after acute cervical spinal cord injury: a comparison of cerebrospinal fluid and magnetic resonance imaging biomarkers. J Neurotrauma 35(3):435–445

    Article  PubMed  Google Scholar 

  12. Davies AL, Hayes KC, Dekaban GA (2007) Clinical correlates of elevated serum concentrations of cytokines and autoantibodies in patients with spinal cord injury. Arch Phys Med Rehabil 88(11):1384–1393

    Article  PubMed  Google Scholar 

  13. Du W, Li H, Sun J, Xia Y, Zhu R, Zhang X, Tian R (2018) The prognostic value of serum neuron specific enolase (NSE) and s100b level in patients of acute spinal cord injury. Med Sci Monit 24:4510–4515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Elizei SS, Kwon BK (2017) The translational importance of establishing biomarkers of human spinal cord injury. Neural Regen Res 12(3):385–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fernández M, Baldassarro VA, Capirossi R et al (2020) Possible strategies to optimize a biomarker discovery approach to correlate with neurological outcome in patients with spinal cord injury: a pilot study. J Neurotrauma 37(3):431–440

    Article  PubMed  Google Scholar 

  16. Harrington GMB, Cool P, Hulme C, Osman A, Chowdhury JR, Kumar N, Budithi S, Wright K (2021) Routinely measured hematological markers can help to predict American Spinal Injury Association Impairment Scale scores after spinal cord injury. J Neurotrauma 38(3):301–308

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hayakawa K, Okazaki R, Ishii K et al (2012) Phosphorylated neurofilament subunit NF-H as a biomarker for evaluating the severity of spinal cord injury patients, a pilot study. Spinal Cord 50(7):493–496

    Article  CAS  PubMed  Google Scholar 

  18. Hayes KC, Hull TC, Delaney GA, Potter PJ, Sequeira KA, Campbell K, Popovich PG (2002) Elevated serum titers of proinflammatory cytokines and CNS autoantibodies in patients with chronic spinal cord injury. J Neurotrauma 19(6):753–761

    Article  CAS  PubMed  Google Scholar 

  19. Heller RA, Raven TF, Swing T et al (2017) CCL-2 as a possible early marker for remission after traumatic spinal cord injury. Spinal Cord 55(11):1002–1009

    Article  CAS  PubMed  Google Scholar 

  20. Itzkovich M, Gelernter I, Biering-Sorensen F et al (2007) The Spinal Cord Independence Measure (SCIM) version III: reliability and validity in a multi-center international study. Disabil Rehabil 29(24):1926–1933

    Article  CAS  PubMed  Google Scholar 

  21. Jensen NA, Munk ASF, Lundgaard I, Nedergaard M (2015) The glymphatic system - a beginner’s guide. Neurochem Res 40(12):2583–99

    Article  Google Scholar 

  22. Kenward MG, Roger JH (1997) Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53(3):983–997

    Article  CAS  PubMed  Google Scholar 

  23. Kuhle J, Gaiottino J, Leppert D et al (2015) Serum neurofilament light chain is a biomarker of human spinal cord injury severity and outcome. J Neurol Neurosurg Psychiatry 86(3):273–279

    Article  PubMed  Google Scholar 

  24. Kwon BK, Bloom O, Wanner IB, Curt A, Schwab JM, Fawcett J, Wang KK (2019) Neurochemical biomarkers in spinal cord injury. Spinal Cord 57(10):819–831

    Article  PubMed  Google Scholar 

  25. Kwon BK, Stammers AMT, Belanger LM et al (2010) Cerebrospinal fluid inflammatory cytokines and biomarkers of injury severity in acute human spinal cord injury. J Neurotrauma 27(4):669–682

    Article  PubMed  Google Scholar 

  26. Kwon BK, Streijger F, Fallah N et al (2017) Cerebrospinal fluid biomarkers to stratify injury severity and predict outcome in human traumatic spinal cord injury. J Neurotrauma 34(3):567–580

    Article  PubMed  Google Scholar 

  27. Leister I, Altendorfer B, Maier D, MacH O, Wutte C, Grillhösl A, Arevalo-Martin A, Garcia-Ovejero D, Aigner L, Grassner L (2021) Serum levels of glial fibrillary acidic protein and neurofilament light protein are related to the neurological impairment and spinal edema after traumatic spinal cord injury. J Neurotrauma 38(24):3431–3439

    Article  PubMed  Google Scholar 

  28. Leister I, Haider T, Mattiassich G et al (2020) Biomarkers in traumatic spinal cord injury - technical and clinical considerations: a systematic review pdf. Neurorehabil Neural Repair 34(2):95–110

    Article  PubMed  Google Scholar 

  29. Loy DN, Sroufe AE, Pelt JL, Burke DA, Cao QL, Talbott JF, Whittemore SR (2005) Serum biomarkers for experimental acute spinal cord injury: rapid elevation of neuron-specific enolase and S-100β. Neurosurgery 56(2):391–396

    Article  PubMed  Google Scholar 

  30. de Mello Rieder M, Oses JP, Kutchak FM et al (2019) Serum biomarkers and clinical outcomes in traumatic spinal cord injury: prospective cohort study. World Neurosurg 122:e1028–e1036

    Article  Google Scholar 

  31. Moghaddam A, Child C, Bruckner T, Gerner HJ (2015) Posttraumatic inflammation as a key to neuroregeneration after traumatic spinal cord injury. Int J Mol Sci 16:7900–7916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ogurcov S, Shulman I, Garanina E et al (2021) Blood serum cytokines in patients with subacute spinal cord injury: a pilot study to search for biomarkers of injury severity. Brain Sci 11(3):1–12

    Article  Google Scholar 

  33. Pouw MH, Kwon BK, Verbeek MM et al (2014) Structural biomarkers in the cerebrospinal fluid within 24 h after a traumatic spinal cord injury: a descriptive analysis of 16 subjects. Spinal Cord 52(6):428–433

    Article  CAS  PubMed  Google Scholar 

  34. Rabinstein AA (2018) Traumatic spinal cord injury. Continuum (Minneap Minn) 24(2, Spinal Cord Disorders):551–566

  35. Roberts TT, Leonard GR, Cepela DJ (2017) Classifications In Brief: American Spinal Injury Association (ASIA) Impairment Scale. Clin Orthop Relat Res 475(5):1499–1504

    Article  PubMed  Google Scholar 

  36. Sengupta MB, Basu M, Iswarari S, Mukhopadhyay KK, Sardar KP, Acharyya B, Mohanty PK, Mukhopadhyay D (2014) CSF proteomics of secondary phase spinal cord injury in human subjects: perturbed molecular pathways post injury. PLoS One. https://doi.org/10.1371/journal.pone.0110885

    Article  PubMed  PubMed Central  Google Scholar 

  37. Skinnider MA, Rogalski J, Tigchelaar S et al (2021) Proteomic portraits reveal evolutionarily conserved and divergent responses to spinal cord injury. Mol Cell Proteomics 20:100096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Streijger F, Skinnider MA, Rogalski JC et al (2017) A targeted proteomics analysis of cerebrospinal fluid after acute human spinal cord injury. J Neurotrauma 34(12):2054–2068

    Article  PubMed  Google Scholar 

  39. Thelin EP, Jeppsson E, Frostell A, Svensson M, Mondello S, Bellander BM, Nelson DW (2016) Utility of neuron-specific enolase in traumatic brain injury; relations to S100B levels, outcome, and extracranial injury severity. Crit Care 20(1):1–15

    Article  Google Scholar 

  40. Tigchelaar S, Gupta R, Shannon CP et al (2019) MicroRNA biomarkers in cerebrospinal fluid and serum reflect injury severity in human acute traumatic spinal cord injury. J Neurotrauma 36(15):2358–2371

    Article  PubMed  Google Scholar 

  41. Wichmann TO, Kasch H, Dyrskog S, Høy K, Møller BK, Krog J, Hoffmann HJ, Hviid CVB, Rasmussen MM (2022) Cerebrospinal fluid and peripheral blood proteomics in traumatic spinal cord injury: a prospective pilot study. Brain and Spine. https://doi.org/10.1016/j.bas.2022.100906

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wichmann TO, Kasch H, Dyrskog S, Høy K, Møller BK, Krog J, Hviid CVB, Hoffmann HJ, Rasmussen MM The inflammatory response and blood-spinal cord barrier integrity in traumatic spinal cord injury- a prospective pilot study. Acta Neurochir (Wien). https://doi.org/10.1007/s00701-022-05369-6

  43. Wu Y, Streijger F, Wang Y et al (2016) Parallel metabolomic profiling of cerebrospinal fluid and serum for identifying biomarkers of injury severity after acute human spinal cord injury. Sci Rep 6(July):1–14

    Google Scholar 

  44. Yokobori S, Zhang Z, Moghieb A et al (2015) Acute diagnostic biomarkers for spinal cord injury: review of the literature and preliminary research report. World Neurosurg 83(5):867–878

    Article  PubMed  Google Scholar 

  45. Yousefifard M, Sarveazad A, Babahajian A, Baikpour M, Shokraneh F, Vaccaro AR, Harrop JS, Fehlings MG, Hosseini M, Rahimi-Movaghar V (2019) Potential diagnostic and prognostic value of serum and cerebrospinal fluid biomarkers in traumatic spinal cord injury: a systematic review. J Neurochem 149:317–330

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank all the patients who participated in this study and the staff at the Aarhus University Hospital for their support and assistance throughout the study period.

Funding

This research was supported by Lundbeckfonden, Aase og Ejnar Danielsens Fond, Grosserer L.F. Foghts Fond, Dagmar Marshalls Fond, A.P. Møller Fonden, Grosserer A.V. Lykfeldt og Hustrus Legat, Jascha Fonden, and UlykkesPatientForeningen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thea Overgaard Wichmann.

Ethics declarations

Ethical approval

This research was approved by the Central Denmark Region Committees on Health Research Ethics (1-10-72-382-17) and the Danish Data Protection Agency (1-16-02-754-17) and registered on ClinicalTrials.gov (NCT03505463). Written informed consent was obtained from all patients.

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Previous presentations.

Some of the data has been published elsewhere, but the data is presented in new analyses in the current manuscript.

This article is part of the Topical Collection on Spine trauma

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wichmann, T.O., Kasch, H., Dyrskog, S. et al. Glial fibrillary acidic protein is a robust biomarker in cerebrospinal fluid and peripheral blood after traumatic spinal cord injury: a prospective pilot study. Acta Neurochir 165, 1417–1425 (2023). https://doi.org/10.1007/s00701-023-05520-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-023-05520-x

Keywords

Navigation