Skip to main content

Advertisement

Log in

Factors which influence the complications of external ventricular cerebrospinal fluid drainage

  • Original Article - CSF Circulation
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

External ventricular drainage (EVD) is one of the most common neurosurgical procedures in emergencies. This study aims to find out which factors influence the occurrence of EVD-related complications in a comparative investigation of metal needles and polyurethane catheters. This is the first clinical study comparing these two systems.

Methods

Adult patients undergoing pre-coronal EVD placement via freehand burr hole trepanation were included in this prospective study. The exclusion criteria were the open EVD insertion and/or a pre-existing infectious disease of the central nervous system.

Results

Two hundred consecutive patients were enrolled. Of these, 100 patients were treated by using metal EVD (group 1) and 100 patients with polyurethane catheters (group 2). The overall complication rate was 26% (misplacement 13.5%, hemorrhage 12.5%, infection 2.5%, and dislocation 1%) without statistically significant differences between both groups. Generalized brain edema and midline shift had a significant influence on misplacements (generalized brain edema: p = 0.0002, Cramer-V: 0.307, OR = 7.364, 95% CI: 2.691–20.148; all patients: p = 0.001, Cramer-V: 0.48, OR = 43.5, 95% CI: 4.327–437.295; group 1: p = 0.047, Cramer-V: 0.216, OR = 3.75, 95% CI: 1.064–13.221; group 2: midline shift: p = 0.038, Cramer-V: 0.195, OR = 3.626, 95% CI: 1.389–9.464) all patients: p = 0.053, Cramer-V: 0.231, OR = 5.533, 95% CI 1.131–27.081; group 1: p = 0.138, Cramer-V: 0.168, OR = 2.769, 95% CI: 0.813–9.429 group 2. Hemorrhages were associated with the use of oral anticoagulants or antiplatelet therapy (p = 0.002; Cramer-V: 0.220, OR = 3.798, 95% CI: 1.572–9.175) with a statistically similar influence in both groups.

Conclusion

Generalized brain edema has a significant influence on misplacements in both groups. Midline shift lost its significance when considering only the patients in group 2. Patients under oral anticoagulation and antiplatelet therapy have increased odds of EVD-associated hemorrhage. Metal needles and polyurethane catheters are equivalent in terms of patient safety when there are no midline shift and generalized brain edema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EVD:

External ventricular drainage

CI:

Confidence interval

CSF:

Cerebrospinal fluid

ICP:

Intracranial pressure

INR:

International normalized ratio

OR:

Odds ratio

References

  1. Asaad SK, Bjarkam CR (2019) The Aalborg Bolt-connected drain (ABCD) study: a prospective comparison of tunnelled and bolt-connected external ventricular drains. Acta Neurochir (Wien) 161(1):33–39

    Article  Google Scholar 

  2. Bergdal O, Springborg JB, Holst AV, Hauerberg J, Way S, Breum P, Romner B (2013) Accuracy of tunnelated vs. bolt-connected external ventricular drains. Clin Neurol Neurosurg 115(10):1972–1975. https://doi.org/10.1016/j.clineuro.2013.05.026

  3. Carney N, Totten AM, O’Reilly C, Ullman JS, Hawryluk GWJ, Bell MJ, Bratton SL, Chesnut R, Harris OA, Kissoon N, Rubiano AM, Shutter L, Tasker RC, Vavilala MS, Wilberger J, Wright DW, Ghajar J (2017) Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery 80(1):6–15

    Article  Google Scholar 

  4. Cinibulak Z, Aschoff A, Apedjinou A, Kaminsky J, Trost HA, Krauss JK (2016) Current practice of external ventricular drainage: a survey among neurosurgical departments in Germany. Acta Neurochir (Wien) 158(5):847–853

    Article  Google Scholar 

  5. Cushing H (1908) Surgery of the head. In: Keen WW (ed) Surgery: its principles and practice / by various authors, vol 3. WB Saunders, Philadelphia, pp 17–277

    Google Scholar 

  6. Dawod G, Henkel N, Karim N, Caras A, Qaqish H, Mugge L, Medhkour A (2020) Does the setting of external ventricular drain placement affect morbidity? A systematic literature review comparing intensive care unit versus operating room procedures. World Neurosurg 140:131–141

    Article  Google Scholar 

  7. Fargen KM, Hoh BL, Neal D, O’connor T, Rivera-Zengotita M, Murad GJA (2016) The burden and risk factors of ventriculostomy occlusion in a high-volume cerebrovascular practice: results of an ongoing prospective database. J Neurosurg 124(6):1805–1812

    Article  Google Scholar 

  8. Foreman PM, Hendrix P, Griessenauer CJ, Schmalz PGR, Harrigan MR (2015) External ventricular drain placement in the intensive care unit versus operating room: evaluation of complications and accuracy. Clin Neurol Neurosurg 128:94–100

    Article  Google Scholar 

  9. Gardner PA, Engh J, Atteberry D, Moossy JJ (2009) Hemorrhage rates after external ventricular drain placement. J Neurosurg 110(5):1021–1025

    Article  Google Scholar 

  10. Hersh EH, Yaeger KA, Neifert SN, Kim J, Dangayach NS, Weiss N (2019) Patterns of health care costs due to external ventricular drain infections. World Neurosurg 128:e31–e37

    Article  Google Scholar 

  11. Hoch V (2011) Geschichte der Händedesinfektion. Frauenheilkunde up2date 5(02):129–140

    Article  Google Scholar 

  12. Hockel K, Schuhmann MU (2018) ICP monitoring by open extraventricular drainage: common practice but not suitable for advanced neuromonitoring and prone to false negativity. Acta Neurochir Suppl 126:281–286

    Article  Google Scholar 

  13. Hong B, Apedjinou A, Heissler HE, Chaib H, Lang JM, Al-Afif S, Krauss JK (2021) Effect of a bundle approach on external ventricular drain-related infection. Acta Neurochir (Wien) 163(4):1135–1142. https://doi.org/10.1007/s00701-020-04698-8

  14. Horan TC, Andrus M, Dudeck MA (2008) CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control 36(5):309–332

    Article  Google Scholar 

  15. Huyette DR, Turnbow BJ, Kaufman C, Vaslow DF, Whiting BB, Oh MY (2008) Accuracy of the freehand pass technique for ventriculostomy catheter placement: retrospective assessment using computed tomography scans. J Neurosurg 108(1):88–91

    Article  Google Scholar 

  16. Jackson DA, Patel AV, Darracott RM, Hanel RA, Freeman WD, Hanley DF (2013) Safety of intraventricular hemorrhage (IVH) thrombolysis based on CT localization of external ventricular drain (EVD) fenestrations and analysis of EVD tract hemorrhage. Neurocrit Care 19(1):103–110

    Article  Google Scholar 

  17. Kakarla UK, Kim LJ, Chang SW, Theodore N, Spetzler RF (2008) Safety and accuracy of bedside external ventricular drain placement. Operative Neurosurg 63(suppl_1):ONS162–ONS167

    Article  Google Scholar 

  18. Kim J-H, Desai NS, Ricci J, Stieg PE, Rosengart AJ, Härtl R, Fraser JF (2012) Factors contributing to ventriculostomy infection. World Neurosurg 77(1):135–140

    Article  Google Scholar 

  19. Kohli G, Singh R, Herschman Y, Mammis A (2018) Infection incidence associated with external ventriculostomy placement: a comparison of outcomes in the emergency department, intensive care unit, and operating room. World Neurosurg 110:e135–e140

    Article  Google Scholar 

  20. Kramer A, Assadian O, Exner M, Hübner N-O, Simon A (eds) (2016) Krankenhaus- und Praxishygiene. Hygienemanagement und Infektionsprävention in medizinischen und sozialen Einrichtungen, 3, überarbeitete. Elsevier Urban & Fischer, München

    Google Scholar 

  21. Krause F (1908) Chirurgie des Gehirns und des Rückenmarks. Urban und Schwarzenberg, Berlin, pp 163–165

  22. Kubilay Z, Amini S, Fauerbach LL, Archibald L, Friedman WA, Layon AJ (2013) Decreasing ventricular infections through the use of a ventriculostomy placement bundle: experience at a single institution. J Neurosurg 118(3):514–520

    Article  Google Scholar 

  23. Le Cat CN (1752) XL. A new trocart for the puncture in the hydrocephalus, and for other evacuations, which are necessary to be made at different times. Phil Trans R Soc 47:267–272. https://doi.org/10.1098/rstl.1751.0041

  24. Lewis A, Czeisler BM, Lord AS (2017) Variations in strategies to prevent ventriculostomy-related infections: a practice survey. Neurohospitalist 7(1):15–23

    Article  Google Scholar 

  25. Liu X, Zimmermann LL, Ho N, Vespa P, Liao X, Hu X (2019) Evaluation of a new catheter for simultaneous intracranial pressure monitoring and cerebral spinal fluid drainage: a pilot study. Neurocrit Care 30(3):617–625

    Article  CAS  Google Scholar 

  26. Lo CH, Spelman D, Bailey M, Cooper DJ, Rosenfeld JV, Brecknell JE (2007) External ventricular drain infections are independent of drain duration: an argument against elective revision. J Neurosurg 106(3):378–383

    Article  Google Scholar 

  27. Lozier AP, Sciacca RR, Romagnoli MF, Connolly ES (2002) Ventriculostomy-related infections: a critical review of the literature. Neurosurgery 51(1): 170–81; discussion 181–2

  28. Maniker AH, Vaynman AY, Karimi RJ, Sabit AO, Holland B (2006) Hemorrhagic complications of external ventricular drainage. Neurosurgery 59(4 Suppl 2):ONS419-24; discussion ONS424-5. https://doi.org/10.1227/01.NEU.0000222817.99752.E6

  29. Mansoor N, Madsbu MA, Mansoor NM, Trønnes AN, Fredriksli OA, Salvesen Ø, Jakola AS, Solheim O, Gulati S (2020) Accuracy and complication rates of external ventricular drain placement with twist drill and bolt system versus standard trephine and tunnelation: a retrospective population-based study. Acta Neurochir (Wien) 162(4):755–761

    Article  Google Scholar 

  30. Meyer B, Schaller K, Rohde V, Hassler W (1994) Percutaneous needle trephination. Experience in 200 cases. Acta Neurochir (Wien) 127(3–4):232–235

    Article  CAS  Google Scholar 

  31. Miller C, Tummala RP (2017) Risk factors for hemorrhage associated with external ventricular drain placement and removal. J Neurosurg 126(1):289–297

    Article  Google Scholar 

  32. Nwachuku EL, Puccio AM, Fetzick A, Scruggs B, Chang Y-F, Shutter LA, Okonkwo DO (2014) Intermittent versus continuous cerebrospinal fluid drainage management in adult severe traumatic brain injury: assessment of intracranial pressure burden. Neurocrit Care 20(1):49–53

    Article  Google Scholar 

  33. Ortolano F, Carbonara M, Stanco A, Civelli V, Carrabba G, Zoerle T, Stocchetti N (2017) External ventricular drain causes brain tissue damage: an imaging study. Acta Neurochir (Wien) 159(10):1981–1989

    Article  Google Scholar 

  34. Schödel P, Proescholdt M, Ullrich O-W, Brawanski A, Schebesch K-M (2012) An outcome analysis of two different procedures of burr-hole trephine and external ventricular drainage in acute hydrocephalus. J Clin Neurosci 19(2):267–270

    Article  Google Scholar 

  35. Talibi SS, Silva AH, Afshari FT, Hodson J, Roberts SA, Oppenheim B, Flint G, Chelvarajah R (2020) The implementation of an external ventricular drain care bundle to reduce infection rates. Br J Neurosurg 34(2):181–186

    Article  Google Scholar 

  36. Tillmanns H (1908) Something about puncture of the brain. The British Medical Journal 2(2492):983–984

    Google Scholar 

  37. Tsitsopoulos PP (2019) Bolt-connected external ventricular drainage: the key to a better accuracy and less complications? Acta Neurochir (Wien) 161:41–42. https://doi.org/10.1007/s00701-018-3738-y

  38. Tunkel AR, Hasbun R, Bhimraj A, Byers K, Kaplan SL, Scheld WM, van de Beek D, Bleck TP, Garton HJL, Zunt JR (2017) 2017 Infectious Diseases Society of America’s clinical practice guidelines for healthcare-associated ventriculitis and meningitis. Clin Infect Dis 64(6):e34–e65

    Article  CAS  Google Scholar 

  39. Wernicke C (1881) Lehrbuch der Gehirnkrankheiten für Aerzte und Studirende. Theodor Fischer, Kassel, pp 186–302

  40. Wiesmann M, Mayer TE (2001) Intracranial bleeding rates associated with two methods of external ventricular drainage. J Clin Neurosci 8(2):126–128

    Article  CAS  Google Scholar 

  41. Zeng T, Gao L (2010) Management of patients with severe traumatic brain injury guided by intraventricular intracranial pressure monitoring: a report of 136 cases. Chin J Traumatol 13(3):146–151

    PubMed  Google Scholar 

  42. Zentner J, Duffner F, Behrens E (1995) Percutaneous needle trephination for external CSF drainage: experience with 226 punctures. Neurosurg Rev 18(1):31–34

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghassan Kerry.

Ethics declarations

Ethics approval

All procedures performed in this study were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study has been approved by the Institutional Review Board (protocol number IRB-2020–008).

Conflict of interest

The authors declare no competing interests.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on CSF Circulation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerry, G., Holtmannspoetter, M., Kubitz, J.C. et al. Factors which influence the complications of external ventricular cerebrospinal fluid drainage. Acta Neurochir 164, 483–493 (2022). https://doi.org/10.1007/s00701-021-05007-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-021-05007-7

Keywords

Navigation