Skip to main content
Log in

Risk factors for polyetheretherketone cage subsidence following minimally invasive transforaminal lumbar interbody fusion

  • Original Article - Spine degenerative
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Interbody cage subsidence is a postoperative complication leading to poor outcomes after minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF). This study aimed to identify risk factors of cage subsidence in lumbar spinal diseases after MIS-TLIF using polyetheretherketone (PEEK) cage.

Methods

In this retrospective cohort study, plain radiographs and three-dimensional computed tomography (3D-CT) performed 12 months after MIS-TLIF were evaluated, and the risk of cage subsidence was calculated with odds ratio (OR), confidence interval (CI), and logistic regression analysis.

Results

A total of 114 patients (mean age, 65 years) and 135 levels were included in this study: 80 (59.3%) with and 55 (40.7%) without cage subsidence. Multifidus atrophy showed the strongest association with PEEK cage subsidence (p < 0.001). Compared to those with normal mass, the odds of PEEK cage subsidence were 76.0 (95% CI: 3.9–1472.9) for severe atrophy. The factors significantly associated with cage subsistence were posterior cage position (OR = 4.2; p = 0.005), cage height ≥ 12 mm (OR = 7.6; p = 0.008), use of an autograft mixed with demineralized bone matrix (DBM) (OR = 5.8; p = 0.002), body mass index (BMI) > 27.5 kg/m2 (OR = 4.2; p = 0.03), and titanium-coated PEEK (Ti-PEEK) cage-type (OR = 38.4, p = 0.02).

Conclusions

In MIS-TLIF with a PEEK cage, the factors associated with an increased risk of cage subsidence were higher BMI, increased severity of multifidus muscle atrophy, Ti-coated PEEK cage-type, cage height ≥ 12 mm, use of DBM mixed autograft, and posterior cage position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abbushi A, Cabraja M, Thomale UW, Woiciechowsky C, Kroppenstedt SN (2009) The influence of cage positioning and cage type on cage migration and fusion rates in patients with monosegmental posterior lumbar interbody fusion and posterior fixation. Eur Spine J 18:1621–1628

    Article  Google Scholar 

  2. Abe K, Orita S, Mannoji C, Motegi H, Aramomi M, Ishikawa T, Kotani T, Akazawa T, Morinaga T, Fujiyoshi T, Hasue F, Yamagata M, Hashimoto M, Yamaushi T, Eguchi Y, Suzuki M, Hanaoka E, Inage K, Sato J, Fujimoto K, Shiga Y, Kanamoto H, Yamauchi K, Nakamura J, Suzuki T, Hynes RA, Aoki Y, Takahashi K, Ohtori S (2017) Perioperative complications in 155 patients who underwent oblique lateral interbody fusion surgery: perspectives and indications from a retrospective, multicenter survey. Spine 42:55–62

    Article  Google Scholar 

  3. An HS, Simpson JM, Glover JM, Stephany J (1995) Comparison between allograft plus demineralized bone matrix versus autograft in anterior cervical fusion. A prospective multicenter study Spine 20:2211–2216

    CAS  PubMed  Google Scholar 

  4. Behrbalk E, Uri O, Parks RM, Musson R, Soh RCC, Boszczyk BM (2013) Fusion and subsidence rate of stand alone anterior lumbar interbody fusion using PEEK cage with recombinant human bone morphogenetic protein-2. Eur Spine J 22:2869–2875

    Article  Google Scholar 

  5. Beutler WJ, Peppelman WC Jr (2003) Anterior lumbar fusion with paired BAK standard and paired BAK Proximity cages: subsidence incidence, subsidence factors, and clinical outcome. Spine J 3:289–293

    Article  Google Scholar 

  6. Bridwell KH, Lenke LG, McEnery KW, Baldus C, Blanke K (1995) Anterior fresh frozen structural allografts in the thoracic and lumbar spine. Do they work if combined with posterior fusion and instrumentation in adult patients with kyphosis or anterior column defects? Spine 20:1410–1418

    Article  CAS  Google Scholar 

  7. Choi JY, Sung KH (2006) Subsidence after anterior lumbar interbody fusion using paired stand-alone rectangular cages. Eur Spine J 15:16–22

    Article  Google Scholar 

  8. Choi WS, Kim JS, Hur JW, Seong JH (2018) Minimally invasive transforaminal lumbar interbody fusion using banana-shaped and straight cages: radiological and clinical results from a prospective randomized clinical trial. Neurosurgery 82:289–298

    Article  Google Scholar 

  9. Fu TS, Wang IC, Lu ML, Hsieh MK, Chen LH, Chen WJ (2016) The fusion rate of demineralized bone matrix compared with autogenous iliac bone graft for long multi-segment posterolateral spinal fusion. BMC musculoskelet disord 17:3

    Article  Google Scholar 

  10. Goz V, Weinreb JH, Schwab F, Lafage V, Errico TJ (2014) Comparison of complications, costs, and length of stay of three different lumbar interbody fusion techniques: an analysis of the Nationwide Inpatient Sample database. Spine J 14:2019–2027

    Article  Google Scholar 

  11. Holly LT, Schwender JD, Rouben DP, Foley KT (2006) Minimally invasive transforaminal lumbar interbody fusion: indications, technique, and complications. Neurosurg Focus 20:1–5

    Article  Google Scholar 

  12. Igarashi H, Hoshino M, Omori K, Matsuzaki H, Nemoto Y, Tsuruta T, Yamasaki K (2019) Factors influencing interbody cage subsidence following anterior cervical discectomy and fusion. Clin spine surg 32:297–302

    Article  Google Scholar 

  13. Ishihara H, Osada R, Kanamori M, Kawaguchi Y, Ohmori K, Kimura T, Matsui H, Tsuji H (2001) Minimum 10-year follow-up study of anterior lumbar interbody fusion for isthmic spondylolisthesis. J Spinal Disord 14:91–99

    Article  CAS  Google Scholar 

  14. Kader D, Wardlaw D, Smith F (2000) Correlation between the MRI changes in the lumbar multifidus muscles and leg pain. Clin Radiol 55:145–149

    Article  CAS  Google Scholar 

  15. Kashii M, Kitaguchi K, Makino T, Kaito T (2019) Comparison in the same intervertebral space between titanium-coated and uncoated PEEK cages in lumbar interbody fusion surgery. J Orthop Sci 25:565–570

    Article  Google Scholar 

  16. Kienle A, Graf N, Wilke HJ (2016) Does impaction of titanium-coated interbody fusion cages into the disc space cause wear debris or delamination? Spine J 16:235–242

    Article  Google Scholar 

  17. Kim MC, Chung HT, Cho JL, Kim DJ, Chung NS (2013) Subsidence of polyetheretherketone cage after minimally invasive transforaminal lumbar interbody fusion. J Spinal Disord Tech 26:87–92

    Article  Google Scholar 

  18. Lee JH, Jeon DW, Lee SJ, Chang BS, Lee CK (2010) Fusion rates and subsidence of morselized local bone grafted in titanium cages in posterior lumbar interbody fusion using quantitative three-dimensional computed tomography scans. Spine 35:1460–1465

    Article  Google Scholar 

  19. Leng J, Han G, Zeng Y, Chen Z, Li W (2020) The effect of paraspinal muscle degeneration on distal pedicle screw loosening following corrective surgery for degenerative lumbar scoliosis. Spine 45:590–598

    Article  Google Scholar 

  20. Lin GX, Quillo-Olvera J, Jo HJ, Lee HJ, Covarrubias-Rosas CA, Jin C, Kim JS (2017) Minimally invasive transforaminal lumbar interbody fusion: a comparison study based on end plate subsidence and cystic change in individuals older and younger than 65 years. World Neurosurg 106:174–184

    Article  Google Scholar 

  21. Park MK, Kim KT, Bang WS, Cho DC, Sung JK, Lee YS, Lee CK, Kim CH, Kwon BK, Lee WK, Han I (2019) Risk factors for cage migration and cage retropulsion following transforaminal lumbar interbody fusion. Spine J 19:437–447

    Article  Google Scholar 

  22. Tokuhashi Y, Ajiro Y, Umezawa N (2009) Subsidence of metal interbody cage after posterior lumbar interbody fusion with pedicle screw fixation. Orthopedics 32:259–264

    Google Scholar 

  23. Wu RH, Fraser JF, Härtl R (2010) Minimal access versus open transforaminal lumbar interbody fusion: meta-analysis of fusion rates. Spine 35:2273–2281

    Article  Google Scholar 

  24. Zadegan SA, Abedi A, Jazayeri SB, Vaccaro AR, Rahimi-Movaghar V (2017) Demineralized bone matrix in anterior cervical discectomy and fusion: a systematic review. Eur Spine J 26:958–974

    Article  Google Scholar 

  25. Zhou QS, Chen X, Xu L, Li S, Du CZ, Sun X, Wang B, Zhu ZZ, Qiu Y (2019) Does vertebral end plate morphology affect cage subsidence after transforaminal lumbar interbody fusion? World Neurosurg 130:E694–E701

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Thanachaporn Kittipibul, MD, MS, and CU spine team for their support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Worawat Limthongkul.

Ethics declarations

Ethics approval

For this type of study, formal consent is not required.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Spine degenerative

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singhatanadgige, W., Sukthuayat, A., Tanaviriyachai, T. et al. Risk factors for polyetheretherketone cage subsidence following minimally invasive transforaminal lumbar interbody fusion. Acta Neurochir 163, 2557–2565 (2021). https://doi.org/10.1007/s00701-021-04923-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-021-04923-y

Keywords

Navigation