Skip to main content
Log in

Technical accuracy of the integration of an external ultrasonography system into a navigation platform: effects of ultrasonography probe registration and target detection

  • Original Article - Brain Tumors
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Intraoperative navigated ultrasonography has reached clinical acceptance, while published data for the accuracy of some systems are missing. We technically quantified and optimised the accuracy of the integration of an external ultrasonography system into a BrainLab navigation system.

Methods

A high-end ultrasonography system (Elegra; Siemens, Erlangen, Germany) was linked to a navigation system (Vector Vision; BrainLab, Munich, Germany). In vitro accuracy and precision was calculated from differences between a real world target (high-precision crosshair phantom) and the ultrasonography image of this target in the navigation coordinate system. The influence of the intrinsic component of the calibration phantom (for ultrasonography probe registration), type of target definition (manual versus automatic) and orientation of the ultrasound probe in relation to the navigation tracking device on accuracy and precision were analysed in different settings (100 measurements for each setting) resembling clinically relevant scenarios in the neurosurgical operating theatre.

Results

Line-of-sight angles of 45°, 62° and 90° for the optical tracking of the navigated ultrasonography probe and a distance of 1.8 m revealed best accuracy and precision. Technical accuracy of the integration of ultrasonography into a standard navigation system is high [Euclidean error: median, 0.79 mm; mean, 0.89 ± 0.42 mm for 62° angle; median range: 1.16–1.46 mm; mean range (±SD): 1.22 ± 0.32 mm to 1.46 ± 0.55 mm for grouped analysis of all angles tested]. Software-based automatic target definition improved precision significantly (p < 0.001).

Conclusions

Integration of an external ultrasonography system into the BrainLab navigation is accurate and precise. By modifying registration (and measurement conditions) via software modification, the in vitro accuracy and precision is improved and requirements for a clinical application are fully met.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Black PM, Moriarty T, Alexander E, Stieg P, Woodard EJ, Gleason PL, Martin CH, Kikinis R, Schwartz RB, Jolesz FA (1997) Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery 41(4):831–842 discussion 842–845

    Article  CAS  PubMed  Google Scholar 

  2. Bucholz RD, Yeh DD, Trobaugh J, McDurmont LL, Sturm CD, Baumann C, Henderson JM, Levy A, Kessman P (2005) The correction of stereotactic inaccuracy caused by brain shift using an intraoperative ultrasound device. In: CVRMed-MRCAS'97. Springer, Berlin Heidelberg, pp. 459–466

  3. Chacko AG, Kumar NKS, Chacko G, Athyal R, Rajshekhar V (2003) Intraoperative ultrasound in determining the extent of resection of parenchymal brain tumours—a comparative study with computed tomography and histopathology. Acta Neurochir 145(9):743–748 discussion 748

    Article  CAS  PubMed  Google Scholar 

  4. Comeau RM, Sadikot AF, Fenster A, Peters TM (2000) Intraoperative ultrasound for guidance and tissue shift correction in image-guided neurosurgery. Med Phys 27(4):787–800

    Article  CAS  PubMed  Google Scholar 

  5. Dorward NL, Alberti O, Velani B, Gerritsen FA, Harkness WF, Kitchen ND, Thomas DG (1998) Postimaging brain distortion: magnitude, correlates, and impact on neuronavigation. J Neurosurg 88(4):656–662

    Article  CAS  PubMed  Google Scholar 

  6. Giorgi C, Casolino DS (1997) Preliminary clinical experience with intraoperative stereotactic ultrasound imaging. Stereotact Funct Neurosurg 68(1–4 Pt 1):54–58

    Article  CAS  PubMed  Google Scholar 

  7. Hammoud MA, Ligon BL, elSouki R, Shi WM, Schomer DF, Sawaya R (1996) Use of intraoperative ultrasound for localizing tumors and determining the extent of resection: a comparative study with magnetic resonance imaging. J Neurosurg 84(5):737–741

    Article  CAS  PubMed  Google Scholar 

  8. Hartov A, Eisner SD, David RW, Paulsen KD, Platenik LA, Miga MI (1999) Error analysis for a free-hand three-dimensional ultrasound system for neuronavigation. Neurosurg Focus 6(3):E7

    Article  Google Scholar 

  9. Hata N, Dohi T, Iseki H, Takakura K (1997) Development of a frameless and armless stereotactic neuronavigation system with ultrasonographic registration. Neurosurgery 41(3):608–613 discussion 613–614

    CAS  PubMed  Google Scholar 

  10. Hirschberg H, Unsgaard G (1997) Incorporation of ultrasonic imaging in an optically coupled frameless stereotactic system. Acta Neurochir Suppl 68:75–80

    CAS  PubMed  Google Scholar 

  11. Hu J, Jin X, Lee JB, Zhang L, Chaudhary V, Guthikonda M, Yang KH, King AI (2007) Intraoperative brain shift prediction using a 3D inhomogeneous patient-specific finite element model. J Neurosurg 106(1):164–169

    Article  PubMed  Google Scholar 

  12. Jödicke A, Deinsberger W, Erbe H, Kriete A, Böker D-K (1998) Intraoperative three-dimensional ultrasonography: an approach to register brain shift using multidimensional image processing. Minim Invasive Neurosurg 41(1):13–19

    Article  PubMed  Google Scholar 

  13. Jödicke A, Springer T, Böker D-K (2004) Real-time integration of ultrasound into neuronavigation: technical accuracy using a light-emitting-diode-based navigation system. Acta Neurochir 146(11):1211–1220

    Article  PubMed  Google Scholar 

  14. Keles GE, Lamborn KR, Berger MS (2003) Coregistration accuracy and detection of brain shift using intraoperative sononavigation during resection of hemispheric tumors. Neurosurgery 53(3):556–562 discussion 562–564

    Article  PubMed  Google Scholar 

  15. Koivukangas J, Louhisalmi Y, Alakuijala J, Oikarinen J (1993) Ultrasound-controlled neuronavigator-guided brain surgery. J Neurosurg 79(1):36–42

    Article  CAS  PubMed  Google Scholar 

  16. Koivukangas J, Ylitalo J, Alasaarela E, Tauriainen A (1986) Three-dimensional ultrasound imaging of brain for neurosurgery. Ann Clin Res 18 Suppl 47:65–72

    CAS  PubMed  Google Scholar 

  17. Le Roux PD, Berger MS, Wang K, Mack LA, Ojemann GA (1992) Low grade gliomas: comparison of intraoperative ultrasound characteristics with preoperative imaging studies. J Neuro-Oncol 13(2):189–198

    Article  Google Scholar 

  18. Lindner D, Trantakis C, Renner C, Arnold S, Schmitgen A, Schneider J, Meixensberger J (2006) Application of intraoperative 3D ultrasound during navigated tumor resection. Minim Invasive Neurosurg 49(4):197–202

    Article  CAS  PubMed  Google Scholar 

  19. Lindseth F, Langø T, Bang J, Nagelhus Hernes TA (2002) Accuracy evaluation of a 3D ultrasound-based Neuronavigation system. Comput Aided Surg 7(4):197–222

    Article  PubMed  Google Scholar 

  20. Moiyadi AV, Shetty PM, Mahajan A, Udare A, Sridhar E (2013) Usefulness of three-dimensional navigable intraoperative ultrasound in resection of brain tumors with a special emphasis on malignant gliomas. Acta Neurochir 155(12):2217–2225

    Article  PubMed  Google Scholar 

  21. Muratore DM, Galloway RL (2001) Beam calibration without a phantom for creating a 3-D freehand ultrasound system. Ultrasound Med Biol 27(11):1557–1566

    Article  CAS  PubMed  Google Scholar 

  22. Nabavi A, Black PM, Gering DT et al (2001) Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 48(4):787–797 discussion 797–798

    CAS  PubMed  Google Scholar 

  23. Nimsky C, Ganslandt O, Cerny S, Hastreiter P, Greiner G, Fahlbusch R (2000) Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery 47(5):1070–1079 discussion 1079–1080

    Article  CAS  PubMed  Google Scholar 

  24. Pennec X, Cachier P, Ayache N (2003) Tracking brain deformations in time sequences of 3D US images. Pattern Recogn Lett 24(4–5):801–813

    Article  Google Scholar 

  25. Petridis AK, Anokhin M, Vavruska J, Mahvash M, Scholz M (2015) The value of intraoperative sonography in low grade glioma surgery. Clin Neurol Neurosurg 131:64–68

    Article  PubMed  Google Scholar 

  26. Prada F, Del Bene M, Mattei L, Lodigiani L, DeBeni S, Kolev V, Vetrano I, Solbiati L, Sakas G, DiMeco F (2015) Preoperative magnetic resonance and intraoperative ultrasound fusion imaging for real-time neuronavigation in brain tumor surgery. Ultraschall Med 36(2):174–186

    CAS  PubMed  Google Scholar 

  27. Reinges MHT, Nguyen H-H, Krings T, Hütter B-O, Rohde V, Gilsbach JM (2004) Course of brain shift during microsurgical resection of supratentorial cerebral lesions: limits of conventional neuronavigation. Acta Neurochir 146(4):369–377 discussion 377

    Article  CAS  PubMed  Google Scholar 

  28. Schlaier JR, Warnat J, Dorenbeck U, Proescholdt M, Schebesch K-M, Brawanski A (2004) Image fusion of MR images and real-time ultrasonography: evaluation of fusion accuracy combining two commercial instruments, a neuronavigation system and a ultrasound system. Acta Neurochir 146(3):271–276 discussion 276–277

    Article  CAS  PubMed  Google Scholar 

  29. Sergeeva O, Uhlemann F, Schackert G, Hergeth C, Morgenstern U, Steinmeier R (2006) Integration of intraoperative 3D-ultrasound in a commercial navigation system. Zentralbl Neurochir 67(4):197–203

    Article  CAS  PubMed  Google Scholar 

  30. Serra C, Stauffer A, Actor B, Burkhardt J-K, Ulrich NH-B, Bernays R-L, Bozinov O (2012) Intraoperative high frequency ultrasound in intracerebral high-grade tumors. Ultraschall Med 33(7):E306–E312

    Article  CAS  PubMed  Google Scholar 

  31. Singhal A, Ross Hengel A, Steinbok P, Doug Cochrane D (2015) Intraoperative ultrasound in pediatric brain tumors: does the surgeon get it right? Childs Nerv Syst 31(12):2353–2357

    Article  PubMed  Google Scholar 

  32. Stieglitz LH, Fichtner J, Andres R, Schucht P, Krähenbühl A-K, Raabe A, Beck J (2013) The silent loss of neuronavigation accuracy: a systematic retrospective analysis of factors influencing the mismatch of frameless stereotactic systems in cranial neurosurgery. Neurosurgery 72(5):796–807

    Article  PubMed  Google Scholar 

  33. Trantakis C, Meixensberger J, Lindner D, Strauss G, Grunst G, Schmidtgen A, Arnold S (2002) Iterative neuronavigation using 3D ultrasound. A feasibility study. Neurol Res 24(7):666–670

    Article  PubMed  Google Scholar 

  34. Trobaugh JW, Trobaugh DJ, Richard WD (1994) Three-dimensional imaging with stereotactic ultrasonography. Comput Med Imaging Graph 18(5):315–323

    Article  CAS  PubMed  Google Scholar 

  35. Tronnier VM, Bonsanto MM, Staubert A, Knauth M, Kunze S, Wirtz CR (2001) Comparison of intraoperative MR imaging and 3D-navigated ultrasonography in the detection and resection control of lesions. Neurosurg Focus 10(2):E3

    Article  CAS  PubMed  Google Scholar 

  36. Unsgaard G, Rygh OM, Selbekk T, Müller TB, Kolstad F, Lindseth F, Hernes TAN (2006) Intra-operative 3D ultrasound in neurosurgery. Acta Neurochir 148(3):235–253 discussion 253

    Article  CAS  PubMed  Google Scholar 

  37. Unsgaard G, Gronningsaeter A, Ommedal S, Nagelhus Hernes TA (2002) Brain operations guided by real-time two-dimensional ultrasound: new possibilities as a result of improved image quality. Neurosurgery 51(2):402–411 discussion 411–412

    Article  PubMed  Google Scholar 

  38. Vince G, Krone A, Woydt M, Roosen K (1998) Real time ultrasound fusion in optical tracking MR/CT image guided surgery. In: Proceedings of the XIII Congress of the European Society for Stereotactic and Functional Neurosurgery, Freiburg, 20-23 September 1998

  39. Woydt M, Krone A, Becker G, Schmidt K, Roggendorf W, Roosen K (1996) Correlation of intra-operative ultrasound with histopathologic findings after tumour resection in supratentorial gliomas. A method to improve gross total tumour resection. Acta Neurochir 138(12):1391–1398

    Article  CAS  PubMed  Google Scholar 

  40. Zagzebski JA (1996) Essentials of ultrasound physics. Mosby, St. Louis, p 40

    Google Scholar 

Download references

Acknowledgments

The data presented in this paper are part of the doctoral thesis of F. A. Wanis.

Funding

This work was supported by a temporary technical support by BrainLab (Test phantom; infra-red camera; modified registration phantom, test-version of the vvCranial 7.81 software). There are no other affiliations or conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus H. T. Reinges.

Ethics declarations

Conflict of interest

Frederic A. Wanis has acted as a Consultant to BrainLab since March 2015.

The other authors certify that they have no affiliations with or involvement in any organisation or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or nonfinancial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1064 Helsinki Declaration and its 403 later amendments or comparable ethical standard.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wanis, F.A., Wessels, L., Reinges, M.H.T. et al. Technical accuracy of the integration of an external ultrasonography system into a navigation platform: effects of ultrasonography probe registration and target detection. Acta Neurochir 160, 305–316 (2018). https://doi.org/10.1007/s00701-017-3416-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-017-3416-5

Keywords

Navigation