Skip to main content

Advertisement

Log in

A new model for biofilm formation and inflammatory tissue reaction: intraoperative infection of a cranial implant with Staphylococcus aureus in rats

  • Original Article - Brain Injury
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Implant failure is a severe and frequent adverse event in all areas of neurosurgery. It often involves infection with biofilm formation, accompanied by inflammation of surrounding tissue, including the brain, and bone loss. The most common bacteria involved are Staphylococcus aureus. We here test whether intraoperative infection of intracranial screws with Staphylococcus aureus would lead to biofilm formation and inflammatory tissue reaction in rats.

Methods

Two titanium screws were implanted in the cranium of Sprague-Dawley rats, anesthetized with xylazine (4 mg/kg) and ketamine (75 mg/kg). Prior to the implantation of the screws, Staphylococcus aureus was given in the drill holes; controls received phosphate-buffered saline (PBS). Rats were euthanized 2, 10 and 21 days after surgery to remove the screws for analysis of biofilm formation with a confocal laser scanning microscope. The surrounding tissue composed of soft tissue and bone, as well as the underlying brain tissue, was evaluated for inflammation, bone remodeling, foreign body reaction and fibrosis after H&E staining.

Results

Intraoperative application of Staphylococcus aureus leads to robust and stable biofilm formation on the titanium implants on days 10 and 21 after surgery, while no bacteria were found in controls. This was accompanied by a substantial inflammatory response of peri-implant tissue after infection, also affecting the underlying brain tissue.

Conclusions

Intraoperative infection of implants with Staphylococcus aureus in rats may be useful as a tool to model new implant materials and surfaces on biofilm formation and inflammatory tissue reaction in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alt V, Lips KS, Henkenbehrens C et al (2011) A new animal model for implant-related infected non-unions after intramedullary fixation of the tibia in rats with fluorescent in situ hybridization of bacteria in bone infection. Bone 48(5):1146–1153

    Article  PubMed  Google Scholar 

  2. Ammann TW, Bostanci N, Belibasakis GN, Thurnheer T (2013) Validation of a quantitative real-time PCR assay and comparison with fluorescence microscopy and selective agar plate counting for species-specific quantification of an in vitro subgingival biofilm model. J Periodontal Res 48(4):517–526

    Article  CAS  PubMed  Google Scholar 

  3. Amorena B, Gracia E (1999) Antibiotic susceptibility assay for Staphylococcus aureus in biofilms developed in vitro. J Antimicrob Chemother 44:43–55

    Article  CAS  PubMed  Google Scholar 

  4. Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20(2):86–100

    Article  CAS  PubMed  Google Scholar 

  5. Arad E, Navon-Venezia S, Gur E, Kuzmenko B, Glick R, Frenkiel-Krispin D, Kramer E, Carmeli Y, Barnea Y (2013) Novel rat model of methicillin-resistant Staphylococcus aureus-infected silicone breast implants: a study of biofilm pathogenesis. Plast Reconstr Surg 131(2):205–214

    Article  CAS  PubMed  Google Scholar 

  6. Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME (2011) Staphylococcus aureus Biofilms. Properties, regulation and roles in human disease. Virulence 25:445–459

    Article  Google Scholar 

  7. Astrup LB, Nielsen MV, Iburg TM, Leifsson PS, Jensen HE, Nielsen OL, Agerholm JS (2013) Brain microabscesses in a porcine model of Staphylococcus aureus sepsis. Acta Vet Scand 55(1):76

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bakaletz LO (2004) Developing animal models for polymicrobial diseases. Nat Rev Microbiol 2(7):552–568

    Article  CAS  PubMed  Google Scholar 

  9. Berendt T, Byren I (2004) Bone and joint infection. Clin Med 4(6):510–518

    Article  Google Scholar 

  10. Bjerknes S, Skogseid IM, Sæhle T, Dietrichs E, Toft M (2014) Surgical site infections after deep brain stimulation surgery: frequency, characteristics and management in a 10-year period. PLoS One 9(8):1–9

    Article  Google Scholar 

  11. Braxton EE, Ehrlich GD, Hall-Stoodley L, Stoodley P, Veeh R, Fux C, Hu FZ, Quigley M, Post JC (2005) Role of biofilms in neurosurgical device-related infections. Neurosurg Rev 28(4):249–255

    Article  PubMed  Google Scholar 

  12. Campoccia D, Montanaro L, Arciola CR (2013) A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces. Biomaterials 34(33):8018–8029

    Article  CAS  PubMed  Google Scholar 

  13. Chen WH, Kang YJ, Dai LY, Wang B, Lu C, Li J, Lü GH (2014) Bacteria detected after instrumentation surgery for pyogenic vertebral osteomyelitis in a canine model. Eur Spine J 23(4):838–845

    Article  PubMed  Google Scholar 

  14. Costerton JW (1999) Bacterial bofilms: a common cause of persistent infections. Science 284(1999):1318–1322

    Article  CAS  PubMed  Google Scholar 

  15. Darouiche RO (2004) Treatment of infections associated with surgical implants. N Engl J Med 350(14):1422–1429

    Article  CAS  PubMed  Google Scholar 

  16. Doll K, Jongsthaphongpun KL, Stumpp NS, Winkel A, Stiesch M (2016) Quantifying implant-associated biofilms: comparison of microscopic, microbiologic and biochemical methods. J Microbiol Methods 130:61–68

    Article  CAS  PubMed  Google Scholar 

  17. Elter C, Heuer W, Demling A, Hannig M, Heidenblut T, Bach F-W, Stiesch-Scholz M (2008) Supra- and subgingival biofilm formation on implant abutments with different surface characteristics. Int J Oral Maxillofac Implants 23(2):327–334

    PubMed  Google Scholar 

  18. Foster TJ (2005) Immune evasion by staphylococci. Nat Rev Microbiol 3:948–958

    Article  CAS  PubMed  Google Scholar 

  19. Freire M (2011) Development of an animal model for Aggregatibacter actinomycetemcomitans biofilm-mediated oral osteolytic infection: a preliminary study. J Periodontol 82(5):778–789

    Article  PubMed  PubMed Central  Google Scholar 

  20. Garrido V, Collantes M, Barberan M, Penuelas I, Arbizu J, Amorena B, Grillo M-J (2014) In vivo monitoring of Staphylococcus aureus biofilm infections and antimicrobial therapy by [18F]fluoro-deoxyglucose-microPET in a mouse model. Antimicrob Agents Chemother 58(11):6660–6667

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gbejuade HO, Lovering AM, Webb JC (2015) The role of microbial biofilms in prosthetic joint infections. Acta Orthop 86(2):147–158

    Article  PubMed  PubMed Central  Google Scholar 

  22. Giannakopoulou A, Grigoriadis N, Bekiari C, Lourbopoulos A, Dori I, Tsingotjidou AS, Michaloudi H, Papadopoulos GC (2013) Acute inflammation alters adult hippocampal neurogenesis in a multiple sclerosis mouse model. J Neurosci Res 91(7):890–900

    Article  CAS  PubMed  Google Scholar 

  23. Haenle M, Zietz C, Lindner T, Arndt K, Vetter A, Mittelmeier W, Podbielski A, Bader R (2013) A model of implant-associated infection in the tibial metaphysis of rats. Sci World J (481975):1–8

  24. Hamani C, Lozano AM (2006) Hardware-related complications of deep brain stimulation: a review of the published literature. Stereotact Funct Neurosurg 84(5–6):248–251

    Article  PubMed  Google Scholar 

  25. Handreck A, Mall EM, Elger DA, Gey L, Gernert M (2015) Different preparations, doses, and treatment regimens of cyclosporine a cause adverse effects but no robust changes in seizure thresholds in rats. Epilepsy Res 112:1–17

    Article  CAS  PubMed  Google Scholar 

  26. Hanke ML, Kielian T (2012) Deciphering mechanisms of staphylococcal biofilm evasion of host immunity. FrontCellInfectMicrobiol 2(2235–2988 (Electronic)):62

  27. Heuer W, Elter C, Demling A, Neumann A, Suerbaum S, Hannig M, Heidenblut T, Bach FW, Stiesch-Scholz M (2007) Analysis of early biofilm formation on oral implants in man. J Oral Rehabil 34(5):377–382

    Article  CAS  PubMed  Google Scholar 

  28. Hollstein E-P (2003) Knöcherne Integration und Biokompatibilität eines neuen resorbierbaren Polymers zur Schraubenaugmentation im osteoporotischen Knochen. München, Ludwig-Maximilian-Universität, Inst. für Tierzucht, Bereich Versuchstierkunde, Diss

  29. Inzana JA, Schwarz EM, Kates SL, Awad HA (2015) A novel murine model of established staphylococcal bone infection in the presence of a fracture fixation plate to study therapies utilizing antibiotic-laden spacers after revision surgery. Bone 72:128–136

    Article  PubMed  Google Scholar 

  30. Jörns A, Günther A, Hedrich H-J, Wedekind D, Tiedge M, Lenzen S (2005) Immune cell infiltration, cytokine expression, and beta-cell apoptosis during the development of type 1 diabetes in the spontaneously diabetic LEW.1AR1/Ztm-iddm rat. Diabetes 54(7):2041–2052

    Article  PubMed  Google Scholar 

  31. Kasliwal MK, Tan LA, Traynelis VC (2013) Infection with spinal instrumentation: review of pathogenesis, diagnosis, prevention, and management. Surg Neurol Int 4(Suppl 5):S392–S403

    PubMed  PubMed Central  Google Scholar 

  32. Kerstens M, Boulet G, Van Kerckhoven M, Clais S, Lanckacker E, Delputte P, Maes L, Cos P (2015) A flow cytometric approach to quantify biofilms. Folia Microbiol (Praha) 60(4):335–342

    Article  CAS  Google Scholar 

  33. Kesavalu L, Sathishkumar S, Bakthavatchalu V, Matthews C, Dawson D, Steffen M, Ebersole JL (2007) Rat model of polymicrobial infection, immunity, and alveolar bone resorption in periodontal disease. Infect Immun 75(4):1704–1712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li D, Gromov K, Soballe K, Puzas JE, O’Keefe RJ, Awad H, Drissi H, Schwarz EM (2008) Quantitative mouse model of implant-associated osteomyelitis and the kinetics of microbial growth, osteolysis, and humoral immunity. J Orthop Res 26:96–105

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lietard C, Thébaud V, Besson G, Lejeune B (2008) Risk factors for neurosurgical site infections: an 18-month prospective survey. J Neurosurg 109(4):729–734

    Article  PubMed  Google Scholar 

  36. Lucke M, Schmidmaier G, Sadoni S, Wildemann B, Schiller R, Stemberger A, Haas NP, Raschke M (2003) A new model of implant-related osteomyelitis in rats. J Biomed Mater Res B Appl Biomater 67:593–602

    Article  CAS  PubMed  Google Scholar 

  37. Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9(1):34–39

    Article  CAS  PubMed  Google Scholar 

  38. Norden CW (1988) Lessons learned from animal models of osteomyelitis. Rev Infect Dis 10(1):103–110

    Article  CAS  PubMed  Google Scholar 

  39. Nowak I (2010) Die knöcherne Einheilung von Zirkon- und Titanimplantaten—Eine histologische und ultrastrukturelle Untersuchung. Düsseldorf, Heinrich-Heine-Universität, Klin. für Kiefer- und Plast. Gesichtschirurgie, Diss

  40. Peralta FDS, Pallos D, Queiroz CS, Ricardo LH (2015) Previous exposure to cyclosporine a and periodontal breakdown in rats. Arch Oral Biol 60(4):566–573

    Article  Google Scholar 

  41. Sakka S, Coulthard P (2011) Implant failure: etiology and complications. Med Oral Patol Oral y Cirugía Bucal 16(1):42–44

    Article  Google Scholar 

  42. Shirtliff M, Mader J, Camper A (2002) Molecular interactions in biofilms. Chem Biol 9(2):859–871

    Article  CAS  PubMed  Google Scholar 

  43. Sillay KA, Larson PS, Starr PA (2008) Deep brain stimulator hardware-related infections: incidence and management in a large series. Neurosurgery 62(2):360–366

    Article  PubMed  Google Scholar 

  44. Silva MT (2011) Macrophage phagocytosis of neutrophils at inflammatory/infectious foci: a cooperative mechanism in the control of infection and infectious inflammation. J Leukoc Biol 89(5):675–683

    Article  CAS  PubMed  Google Scholar 

  45. Snowden JN, Beaver M, Smeltzer MS, Kielian T (2012) Biofilm-infected intracerebroventricular shunts elicit inflammation within the central nervous system. Infect Immun 80(9):3206–3214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stavrakis AI, Loftin AH, Lord EL, Hu Y, Manegold JE, Dworsky EM, Scaduto AA, Bernthal NM (2015) Current animal models of postoperative spine infection and potential future advances. Front Med 2:34

    Article  CAS  Google Scholar 

  47. Stucker F, Ackermann D (2011) Immunsuppressiva—Wirkungen, nebenwirkungen und interaktionen. Ther Umschau 68(12):679–686

    Article  Google Scholar 

  48. Tavernier S, Coenye T (2015) Quantification of Pseudomonas aeruginosa in multispecies biofilms using PMA-qPCR. PeerJ 3:e787

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tonetti MS (2000) Schmid J (1994) pathogenesis of implant failures. Periodontol 4:127–138

    Article  Google Scholar 

  50. Trindade R, Albrektsson T, Tengvall P (2014) Foreign body reaction to biomaterials: On mechanisms for buildup and breakdown of osseointegration. Clin Implant Dent Relat Res 1–12

  51. Ujiie Y, Todescan R, Davies JE (2012) Peri-implant crestal bone loss: a putative mechanism. Int J Dent. doi:10.1155/2012/742439

  52. Veerachamy S, Yarlagadda T, Manivasagam G, Yarlagadda PK (2014) Bacterial adherence and biofilm formation on medical implants: a review. Proc Inst Mech Eng H 228(10):1083–1099

    Article  PubMed  Google Scholar 

  53. Verma RK, Rajapakse S, Meka A, Hamrick C, Pola S, Bhattacharyya I, Nair M, Wallet SM, Aukhil I, Kesavalu L (2010) Porphyromonas gingivalis and treponema denticola mixed microbial infection in a rat model of periodontal disease. Interdiscip Perspect Infect Dis. doi:10.1155/2010/605125

  54. Voges J, Hilker R, Bötzel K et al (2007) Thirty days complication rate following surgery performed for deep-brain-stimulation. Mov Disord 22(10):1486–1489

    Article  PubMed  Google Scholar 

  55. Xiong J, Burkovetskaya M, Karpuk N, Kielian T (2012) IL-1RI (interleukin-1 receptor type I) signalling is essential for host defence and hemichannel activity during acute central nervous system bacterial infection. ASN Neuro 4(3):175–185

    Article  CAS  Google Scholar 

  56. Yarwood J, Bartels D (2004) Quorum sensing in Staphylococcus aureus biofilms. J Bacteriol 186(6):1838–1850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Gebr. Brasseler GmbH & Co. KG, Lemgo, Germany, for kindly donating the screws used in this study. This work was carried out as an integral part of the BIOFABRICATION FOR NIFE Initiative, which is financially supported by the ministry of Lower Saxony and the VolkswagenStiftung (both BIOFABRICATION FOR NIFE: VWZN2860). NIFE is the Lower Saxony Center for Biomedical Engineering, Implant Research and Development, a joint translational research center of the Hannover Medical School, Leibniz University Hannover, University of Veterinary Medicine Hannover and Laser Zentrum Hannover e.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Schwabe.

Ethics declarations

Ethical standards

All animal studies have been approved by the appropriate ethics committee and performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Conflict of interest

All authors have no financial relationship with the organization that sponsored the research

Additional information

Comments

This is a carefully performed study of a Staphylococcus aureus biofilm formation model on screw implants in the rat. The authors were able to convincingly demonstrate the reliable production of implant biofilms and local inflammatory and osteoclastic reactions. This will prove to be a simple and useful model in the search for therapies and implant resistance to biofilm formations.

Zvi Harry Rappaport

Petah Tiqva, Israel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glage, S., Paret, S., Winkel, A. et al. A new model for biofilm formation and inflammatory tissue reaction: intraoperative infection of a cranial implant with Staphylococcus aureus in rats. Acta Neurochir 159, 1747–1756 (2017). https://doi.org/10.1007/s00701-017-3244-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-017-3244-7

Keywords

Navigation