Skip to main content
Log in

Comparative reproductive biology reveals two distinct pollination strategies in Neotropical twig-epiphyte orchids

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Members of Oncidiinae are widely known for their interactions with oil-collecting bees that explore lipophilic secretions on flowers. They may also be pollinated through food deception and the offering of nectar. Although data on breeding systems are available for many Oncidiinae orchids, little is known about the reproductive strategies in Rodriguezia, a neotropical genus of ca. 55 species. In this paper, we explore the reproductive biology of two species of Rodriguezia with distinctive morphologies: R. decora and R. lanceolata. Floral features, spectral reflectance, pollinators and pollination mechanisms, and breeding systems were studied. Both species are scentless and produce nectar as a reward. Floral nectar is secreted by a gland at the base of the labellum and stored into the sepaline spur. Rodriguezia decora reflects mainly in the blue and red regions of the light spectrum, while R. lanceolata reflects in the red region. Rodriguezia decora is exclusively visited and pollinated by butterflies, while Trochilidae hummingbirds are the pollinators of R. lanceolata. Pollinaria attach to the upper third of the proboscis of butterflies (R. decora), and to the bill of hummingbirds (R. lanceolata), during the collection of nectar from the spur. Both Rodriguezia species are self-sterile. Flower features and floral reflectance support the occurrence of psychophily in R. decora and ornithophily in R. lanceolata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdala-Roberts L, Parra-Tabla V, Navarro J (2007) Is floral longevity influenced by reproductive costs and pollination success in Cohniella ascendens (Orchidaceae)? Ann Bot (Oxford) 100:1367–1371. https://doi.org/10.1093/aob/mcm219

    Article  Google Scholar 

  • Aguiar JMRBV, Pansarin ER (2013) Does Oeceoclades maculata (Orchidaceae) reabsorbs nectar? Eur J Environm Sci 3:113–118

    Article  Google Scholar 

  • Aguiar JMRBV, Pansarin LM, Ackerman JD, Pansarin ER (2012) Biotic versus abiotic pollination in Oeceoclades maculata (Lindl.) Lindl. (Orchidaceae). Pl Spec Biol 27:86–95. https://doi.org/10.1111/j.1442-1984.2011.00330.x

    Article  Google Scholar 

  • Almeida AS, Vieira ICG (2010) Centro de Endemismo Belém: status da vegetação remanescente e desafios para a conservação da biodiversidade e restauração ecológica. Revista Estudos Univ 36:95–111

    Google Scholar 

  • Bergamo PJ, Rech AR, Brito VLG, Sazima M (2016) Flower colour and visitation rates of Costus arabicus support the “bee-avoidance” hypothesis for red-reflecting hummingbird-pollinated flowers. Funct Ecol 30:710–720. https://doi.org/10.1111/1365-2435.12537

    Article  Google Scholar 

  • Carvalho R, Machado IC (2006) Rodriguezia bahiensis Rchb.f.: biologia floral, polinizadores e primeiro registro de polinização por moscas Acroceridae em Orchidaceae. Brazil J Bot 29:461–470. https://doi.org/10.1590/S0100-84042006000300013

    Article  Google Scholar 

  • Charanasri U, Kamemoto H (1977) Self-incompatibility in the Oncidium Alliance. Hawaii Orchid J 6:12–15

    Google Scholar 

  • Chase MW, Williams NH, Faria AD, Neubig KM, Amaral MCE, Whitten WM (2009) Floral convergence in Oncidiinae (Cymbidieae; Orchidaceae): an expanded concept of Gomesa and a new genus Nohawilliamsia. Ann Bot (Oxford) 109:1–16. https://doi.org/10.1093/aob/mcp067

    Article  Google Scholar 

  • Cronk QCB, Ojeda I (2008) Bird-pollinated flowers in an evolutionary and molecular context. J Exp Bot 59:715–727. https://doi.org/10.1093/jxb/ern009

    Article  PubMed  CAS  Google Scholar 

  • Cruden RW, Herman-Parker SM (1979) Butterfly pollination of Caesalpinia pulcherrima, with observations on the psychophilous syndrome. J Ecol 67:155–168. https://doi.org/10.2307/2259342

    Article  Google Scholar 

  • Dafni A (1992) Pollination ecology: a practical approach. Oxford University Press, Oxford

    Google Scholar 

  • Eguchi E, Watanabe K, Hariyama T, Yamamoto K (1982) A comparison of electrophysiologocally determined spectral responses in 35 species of Lepidoptera. J Insect Physiol 28:675–682

    Article  Google Scholar 

  • Faegri K, van der Pijl L (1979) The principles of pollination ecology. Pergamon Press, Oxford

    Google Scholar 

  • Fahn A (1979) Secretory tissues in plants. Academic Press, London

    Google Scholar 

  • Fleming TH, Kress WJ (2013) The ornaments of life: coevolution and conservation in the tropics. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill Book Co, New York

    Google Scholar 

  • Kearns CA, Inouye D (1993) Techniques for pollinations biologists. University Press of Colorado, Niwot

    Google Scholar 

  • Köppen W (1948) Climatologia: com um estúdio de los climas de la tierra. Fondo de Cultura Econômica, México

    Google Scholar 

  • Leitão CAE, Cortelazzo AL (2008) Structural and histochemical characterization of the colleters of Rodriguezia venusta (Orchidaceae). Austral J Bot 56:161–165. https://doi.org/10.1071/BT07114

    Article  Google Scholar 

  • Leitão CAE, Dolder MAH, Cortelazzo AL (2014) Anatomy and histochemistry of the nectaries of Rodriguezia venusta (Lindl.). Rchb. f. (Orchidaceae). Flora 209:233–243. https://doi.org/10.1016/j.flora.2014.03.002

    Article  Google Scholar 

  • Leitão-Filho HF (1992) A flora arbórea da Serra do Japi. In: Morellato LPC (ed) História natural da Serra do Japi. Editora da Unicamp/Fapesp, Campinas, pp 40–62

    Google Scholar 

  • Micheneau C, Fournel J, Warren BH, Hugel S, Gauvin-Bialecki A, Pailler T, Strasberg D, Chase MW (2010) Orthoptera, a new order of pollinator. Ann Bot (Oxford) 105:355–364. https://doi.org/10.1093/aob/mcp299

    Article  Google Scholar 

  • Montalvo AM, Ackerman JD (1987) Limitations to fruit production in Ionopsis utricularioides (Orchidaceae). Biotropica 19:24–31

    Article  Google Scholar 

  • Nunes CEP, Castro MM, Galetto L, Sazima M (2013) Anatomy of the floral nectary of ornithophilous Elleanthus brasiliensis (Orchidaceae: Sobralieae). Bot J Linn Soc 171:764–772. https://doi.org/10.1111/boj.12024

    Article  Google Scholar 

  • Ospina-Calderón NH, Duque-Buitrago CA, Tremblay RL, Tupac-Otero J (2015) Pollination ecology of Rodriguezia granadensis (Orchidaceae). Lankesteriana 15:129–139

    Article  Google Scholar 

  • Pansarin ER (2003) Biologia reprodutiva e polinização em Epidendrum paniculatum Ruiz & Pavón (Orchidaceae). Revista Brasil Bot 26:203–211. https://doi.org/10.1590/S0100-84042003000200008

    Article  Google Scholar 

  • Pansarin ER, Amaral MCE (2008) Reproductive biology and pollination mechanisms of Epidendrum secundum (Orchidaceae). Floral variation: a consequence of natural hybridization? Pl Biol 10:211–219. https://doi.org/10.1111/j.1438-8677.2007.00025.x

    Article  CAS  Google Scholar 

  • Pansarin ER, Ferreira AWC (2015) Butterfly pollination in Pteroglossa (Orchidaceae, Orchidoideae): a comparative study on the reproductive biology of two species of a Neotropical genus of Spiranthinae. J Pl Res 128:459–468. https://doi.org/10.1007/s10265-015-0707-x

    Article  CAS  Google Scholar 

  • Pansarin ER, Pansarin LM (2010) The family Orchidaceae in the Serra do Japi, State of São Paulo, Brazil. Springer, Wien. https://doi.org/10.1007/978-3-211-99755-0

    Book  Google Scholar 

  • Pansarin ER, Pansarin LM (2011) Reproductive biology of Trichocentrum pumilum: an orchid pollinated by oil-collecting bees. Pl Biol 13:576–581. https://doi.org/10.1111/j.1438-8677.2010.00420.x

    Article  CAS  Google Scholar 

  • Pansarin ER, Pansarin LM (2014) Floral biology of two Vanilloideae (Orchidaceae) primarily adapted to pollination by euglossine bees. Pl Biol 16:1104–1113. https://doi.org/10.1111/plb.12160

    Article  CAS  Google Scholar 

  • Pansarin ER, Bittrich V, Amaral MCE (2006) At daybreak—reproductive biology and isolating mechanisms in Cirrhaea dependens (Orchidaceae). Pl Biol 8:494–502. https://doi.org/10.1055/s-2006-923800

    Article  CAS  Google Scholar 

  • Pansarin ER, Pansarin LM, Santos IA (2015) Floral features, pollination biology, and breeding system of Comparettia coccinea (Orchidaceae: Oncidiinae). Flora 207:57–63. https://doi.org/10.1016/j.flora.2015.09.008

    Article  Google Scholar 

  • Pansarin ER, Santos IA, Pansarin LM (2017) Comparative reproductive biology and pollinator specificity among sympatric Gomesa (Orchidaceae: Oncidiinae). Pl Biol 19:147–155. https://doi.org/10.1111/plb.12525

    Article  CAS  Google Scholar 

  • Parra-Tabla V, Magaña-Rueda S (2000) Effects of deforestation on the reproductive ecology of Oncidium ascendens (Orchidaceae). Tropical bees: management and diversity. In: Munn, P. (ed), Proceedings of the VI international conference on tropical bees. San José de Costa Rica. IBRA, Cardiff, UK

  • Pridgeon AM, Cribb PJ, Chase MW, Rasmussen FN (2009) Genera Orchidacearum 5: Epidendroideae (part two). Oxford University Press, New York

    Google Scholar 

  • Proctor M, Yeo P, Lack A (1996) The natural history of pollination. Timber Press, Portland

    Google Scholar 

  • Purvis MJ, Collier DC, Walls D (1964) Laboratory techniques in botany. Butterwoths, London

    Google Scholar 

  • Rodríguez-Gironés MA, Santamaría L (2004) Why are so many birdflowers red? PLoS Biol 2:e350. https://doi.org/10.1371/journal.pbio.0020350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodríguez-Robles JA, Meléndez EJ, Ackerman JD (1992) Effects of display size, flowering phenology, and nectar availability on effective visitation frequency in Comparettia falcata (Orchidaceae). Amer J Bot 79:1009–1017

    Article  Google Scholar 

  • Ruschi A (1989) Aves do Brasil, Beija-flores. Vol. IV. Editora Expressão e Cultura, Rio de Janeiro

  • Sakai WS (1973) Simple method for differential staining of paraffin embedded plant material using toluidine blue O. Stain Technol 43:247–249

    Article  Google Scholar 

  • Shrestha M, Dyer AG, Boyd-Gerny S, Wong BBM, Burd M (2013) Shades of red: bird-pollinated flowers target the specific colour discrimination abilities of avian vision. New Phytol 198:30–310. https://doi.org/10.1111/nph.12135

    Article  Google Scholar 

  • Simpson BB, Neff JL (1981) Floral rewards: alternatives to pollen and nectar. Ann Missouri Bot Gard 68:301–322. https://doi.org/10.2307/2398800

    Article  Google Scholar 

  • Singer RB, Koehler S (2003) Notes on the pollination of Notylia nemorosa (Orchidaceae): Do pollinators necessarily promote cross pollination? J Pl Res 116:19–25. https://doi.org/10.1007/s10265-002-0064-4

    Article  Google Scholar 

  • Singer RB, Sazima M (2000) The pollination of Stenorrhynchos lanceolatus (Aublet) L. C. Rich. (Orchidaceae: Spiranthinae) by hummingbirds in southeastern Brazil. Pl Syst Evol 223:221–227

    Article  Google Scholar 

  • Stiles FG (1981) Geographical aspects of bird- flower coevolution with particular reference to Central America. Ann Missouri Bot Gard 68:323–351

    Article  Google Scholar 

  • Stiles FG, Freeman CE (1993) Patterns in floral nectar characteristics of some bird-visited plant species from Costa Rica. Biotropica 25:191–205

    Article  Google Scholar 

  • Telles FJ, Kelber M, Rodríguez-Gironés MA (2016) Wavelength discrimination in the hummingbird hawkmoth Macroglossum stellatarum. J Exp Biol 219:553–560. https://doi.org/10.1242/jeb.130484

    Article  PubMed  Google Scholar 

  • Torretta JP, Gomiz NE, Aliscioni SS, Bello ME (2011) Biología reproductiva de Gomesa bifolia (Orchidaceae, Cymbidieae, Oncidiinae). Darwiniana 49:16–24

    Google Scholar 

  • Vale A, Navarro L, Rojas D, Álvarez JC (2011) Breeding system and pollination by mimicry of the orchid Tolumnia guibertiana in Western Cuba. Pl Spec Biol 26:163–173. https://doi.org/10.1111/j.1442-1984.2011.00322.x

    Article  Google Scholar 

  • van der Cingel NA (2001) An atlas of orchid pollination. America, Africa, Asia and Australia. Balkema Publishers, Rottherdam

    Google Scholar 

  • van der Pijl L, Dodson CH (1966) Orchid flowers: their pollination and evolution. University of Miami, Coral Gables

    Google Scholar 

Download references

Acknowledgements

The authors thank André V.L. Freitas (UNICAMP) for the identification of the butterflies. A.W.C.F. thanks FAPEMA for funding this research (grant 0430/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emerson R. Pansarin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Ricarda Riina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pansarin, E.R., Bergamo, P.J., Ferraz, L.J.C. et al. Comparative reproductive biology reveals two distinct pollination strategies in Neotropical twig-epiphyte orchids. Plant Syst Evol 304, 793–806 (2018). https://doi.org/10.1007/s00606-018-1510-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-018-1510-7

Keywords

Navigation