Skip to main content

Advertisement

Log in

Polyploidy and aneuploidy of seed plants from the Qinghai–Tibetan Plateau and their biological implications

  • Review
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The Qinghai–Tibetan Plateau is biologically diverse, with 9556 species of vascular plants in the 2,500,000 km2 plateau area. We focused on seed plants from the Qinghai–Tibetan Plateau. A total of 9321 species in the Qinghai–Tibetan Plateau were recorded. Sixty-one of these genera are Chinese endemics. Our results suggested that the flora of the Qinghai–Tibetan Plateau was characterized by relatively few polyploids, and aneuploidy was also considered as relatively rare. We inferred that aneuploidy may be affected by environmental factors and the addition or loss of centromeres. Furthermore, the highest frequency of polyploids was found among perennial herbs. Annuals had low polyploidy, and perennials had high polyploidy. Species richness was correlated with the incidence of polyploids, environmental conditions, and reproductive isolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahuja MR (2005) Polyploidy in gymnosperms: revisited. Silvae Genet 54:59–69

    Google Scholar 

  • Bennett MD (2004) Perspectives on polyploidy in plants-ancient and neo. Biol J Linn Soc 82:411–423. doi:10.1111/j.1095-8312.2004.00328.x

    Article  Google Scholar 

  • Boufford DE, van-Dyck PP (1999) South-Central China. In: Mittermeier RA, Myers N, Mittermeier CG (eds) Hotspots: earth’s biologically richest and most endangered terrestrial ecoregions. Cemex, Mexico, pp 338–351

    Google Scholar 

  • Bowers JE, Chapman BA, Rong JK, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438. doi:10.1038/nature01521

    Article  CAS  PubMed  Google Scholar 

  • Brown WV (1972) Textbook of cytogenetics. Mosby, Saint Louis

    Google Scholar 

  • Darlington CD (1937) Recent advances in cytology. P. Blakiston’s Son & Co, Philadelphia

    Google Scholar 

  • Ehrendorfer F (1980) Polyploidy and distribution. In: Lewis WH (ed) Polyploidy: Biological Relevance. Plenum, New York, pp 45–60

    Chapter  Google Scholar 

  • Goldblatt P (1980) Polyploidy in angiosperms: monocotyledons. In: Lewis WH (ed) Polyploidy: biological relevance. Plenum Press, New York, pp 219–239

    Chapter  Google Scholar 

  • Goldblatt P, Johnson DE (1979) Index to Plant Chromosome Numbers (IPCN). Missouri Botanical Garden, St. Louis

    Google Scholar 

  • Grant V (1963) The origin of adaptations. Columbia University Press, New York

    Google Scholar 

  • Grant V (1981) Plant speciation. Columbia University Press, New York

    Google Scholar 

  • Griffiths AJF, Miller JH, Suzuki DT, Lewontin RC, Gelbart WM (2000) Transcription: an overview of gene regulation in eukaryotes, an introduction to genetic analysis, 7th edn. W. H. Freeman and Company, New York

    Google Scholar 

  • Gustafsson A (1948) Polyploidy, lifeform and vegetative reproduction. Hereditas 34:1–22. doi:10.1111/j.1601-5223.1948.tb02824.x

    Article  Google Scholar 

  • Hewitt G (2000) The genetic legacy of the quaternary ice ages. Nature 405:907–913. doi:10.1038/35016000

    Article  CAS  PubMed  Google Scholar 

  • Khoshoo TN (1959) Polyploidy in Gymnosperms. Evolution 13:24–39. doi:10.2307/2405943

    Article  Google Scholar 

  • Levin DA (2004) The ecological transition in speciation. New Phytol 161:91–96. doi:10.1046/j.1469-8137.2003.00921.x

    Article  Google Scholar 

  • Lewis WH (1980) Polyploidy in angiosperms: dicotyledons. In: Lewis WH (ed) Polyploidy: biological relevance. Plenum Press, New York, pp 241–268

    Chapter  Google Scholar 

  • Li XW, Li J (1993) A preliminary floristics study on the seed plants from the region of Hengduan Mountain. Acta Bot Yunnan 15:217–231

    CAS  Google Scholar 

  • Liu JQ (2004) Uniformity of karyotypes in Ligularia (Asteraceae: Senecioneae), a highly diversified genus of the eastern Qinghai–Tibet Plateau highland sand adjacent areas. Bot J Linn Soc 144:329–342. doi:10.1111/j.1095-8339.2003.00225.x

    Article  Google Scholar 

  • Liu JQ, Liu SW, Ho TN, Lu A (2001) Karyological studies on the Sino-Himalayan genus, Cremanthodiurn (Asteraceae: senecioneae). Bot J Linn Soc 135:107–112. doi:10.1111/j.1095-8339.2001.tb01085.x

    Article  Google Scholar 

  • Lutz AM (1907) A preliminary note on the chromosomes of Oenothera Lamarckiana and one of its mutants, O. gigas. Science 26:151–152. doi:10.1126/science.26.657.151

    Article  CAS  PubMed  Google Scholar 

  • Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421–423

    Article  CAS  PubMed  Google Scholar 

  • Morton JK (1993) Chromosome numbers and polyploidy in the flora of Cameroons Mountain. Opera Bot 121:159–172

    Google Scholar 

  • Muntzing A (1933) Hybrid incompatibility and the origin of polyploidy. Hereditas 18:33–35. doi:10.1111/j.1601-5223.1933.tb02596.x

    Article  Google Scholar 

  • Muntzing A (1936) The evolutionary significance of autopolyploidy. Hereditas 21:263–378. doi:10.1111/j.1601-5223.1936.tb03204.x

    Google Scholar 

  • Nie ZL, Gu ZJ, Sun H (2002) Cytological study of genus Tibetia (Fabaceae) in the Hengduan Mountains Region, China. J Pl Res 115:17–22. doi:10.1007/s102650200003

    Article  Google Scholar 

  • Nie ZL, Wen J, Gu ZJ, Boufford DE, Sun H (2005) Polyploidy in the flora of the Hengduan Mountains hotspot, Southwestern China. Ann Missouri Bot Gard 92:275–306

    Google Scholar 

  • Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annual Rev Genet 34:401–437. doi:10.1146/annurev.genet.34.1.401

    Article  CAS  Google Scholar 

  • Packer JG (1969) Polyploidy in the Canadian Arctic Archipelago. Arctic Alpine Res 1:15–28. doi:10.2307/1550357

    Article  Google Scholar 

  • Sanderson SC, Strother JL (1973) The origin of aneuploidy in Hymenoxys odorata. Nature New Biol 242:220–221. doi:10.1038/newbio242220a0

    Article  CAS  PubMed  Google Scholar 

  • Sax HJ (1932) Chromosome pairing in Larix species. J Arnold Arbor 13:368–373

    Google Scholar 

  • Schulz-Schaeffer J (1980) Aneuploidy, cytogenetics. Springer, New York

    Book  Google Scholar 

  • Stebbins GL (1951) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Stebbins GL (1985) Polyploidy, hybridization, and the invasion of new habitats. Annu Missouri Bot Gard 72:824–832. doi:10.2307/2399224

    Article  Google Scholar 

  • Wang HS (1989) A study on the origin of spermatophytic genera endemic to China. Acta Bot Yunnan 11:1–16

    Google Scholar 

  • Wang L, Gu ZJ, Gong X, Xiao TJ (1993) A cytological study on fifteen species in six genera of Liliaceae from Yunnan. Acta Phytotaxon Sin 31:549–559

    Google Scholar 

  • Wang L, Gu ZJ, Gong X, Sun H (1994) Preliminary karyomorphological study on the plants in genera Oxytropis and Astragalus from Qinghai–Xizang Plateau. Acta Bot Yunnan 16:53–59

    Google Scholar 

  • Wu ZY (1991) The areal-types of Chinese genera of seed plants. Acta Bot Yunnan 13(Suppl.IV):1–139

    CAS  Google Scholar 

  • Wu YH (2008) The vascular plants and their ecogeographical distribution of the Qinghai–Tibetan Plateau. Science Press, Beijing

    Google Scholar 

  • Wu ZY, Sun H, Zhou ZK, Peng H, Li DZ (2007) Origin and differentiation of endemism in the Flora of China. Frontiers Biol China 2:125–143. doi:10.1007/s11515-007-0020-8

    Article  Google Scholar 

  • Yuan Q, Yang QE (2008) Low incidence of polyploidys and high uniformity of karyotypes displayed by Delphinium (Ranunculaceae) in the Hengduan Mountains region of southwest China. Bot J Linn Soc 158:172–188. doi:10.1111/j.1095-8339.2008.00849.x

    Article  Google Scholar 

  • Zheng D (1996) The system of physic-geographical regions of the Qinghai–Xizang (Tibet) Plateau. Sci China (ser D) 39:410–417

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by Yunnan Postdoctoral Grants to S. Basak, Major State Basic Research Development Program (2010CB951704), National Natural Science Foundation of China (NSFC) (41271058) to Y. P. Yang, and the General Project of Natural Science Research in Anhui Province (AQKJ2015B018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Ping Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Karol Marhold.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, GY., Basak, S., Grumbine, R.E. et al. Polyploidy and aneuploidy of seed plants from the Qinghai–Tibetan Plateau and their biological implications. Plant Syst Evol 303, 565–571 (2017). https://doi.org/10.1007/s00606-017-1396-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-017-1396-9

Keywords

Navigation