Skip to main content
Log in

Terata of two legume species with radialized corolla: some correlations in floral symmetry

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Most papilionoid legumes (Leguminosae) are characterized by zygomorphic flowers. Features of monosymmetry are inherent to all floral whorls. We compare flowers of two species of papilionoid legumes with anomalously radialized corollas. Except for vexilloid mode of all five petals, these flowers were remarkable with their free androecium and (in case of Clitoria ternatea) actinomorphic calyx. The symmetry of the gynoecium remains unaltered. These correlations point at a strong interrelation between perianth and androecium symmetry control, possibly governed by the same genes. A review on floral symmetry in related papilionoid genera indicates that staminal fusion is only possible in case of a discernible adaxial petal (flag). This rule has some exceptions which contribute to the idea of independent recurrent origin of monosymmetry in different leguminous clades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amaral-Neto LP, Westerkamp C, Melo GAR (2015) From keel to inverted keel flowers: functional morphology of ‘‘upside down’’ papilionoid flowers and the behavior of their bee visitors. Pl Syst Evol. doi:10.1007/s00606-015-1221-2

    Google Scholar 

  • Barrett SCH (1995) Mating system evolution in flowering plants: micro- and macroevolutionary approaches. Acta Bot Neerl 44:385–402

    Article  Google Scholar 

  • Bello MA, Rudall PJ, Hawkins JA (2012) Combined phylogenetic analyses reveal interfamilial relationships and patterns of floral evolution in the eudicot order Fabales. Cladistics 1:1–29

    Google Scholar 

  • Benlloch R, Navarro C, Beltrán J, Cañas LA (2003) Floral development of the model legume Medicago truncatula: ontogeny studies as a tool to better characterize homeotic mutations. Sex Pl Reprod 15:231–241

    Google Scholar 

  • Bonavia (1868) Gardener’s Chronicle and Agricultural Gazette 39:1013

  • Brummitt RK (1970) A new species of Calpurnia E. Mey. from the Transvaal and Swaziland. Kew Bull 24:71–73

    Article  Google Scholar 

  • Busch A, Zachgo S (2007) Control of corolla monosymmetry in the Brassicaceae Iberis amara. Proc Natl Acad Sci USA 104:16714–16719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cardoso D, de Queiroz LP, Pennington RT, de Lima HC, Fonty É, Wojciechowski MF, Lavin M (2012a) Revisiting the phylogeny of papilionoid legumes: new insights from comprehensively sampled early-branching lineages. Amer J Bot 99:1991–2013

    Article  Google Scholar 

  • Cardoso D, de Lima HC, Rodrigues RS, de Quieroz LP, Pennington RT, Lavin M (2012b) The realignment of Acosmium sensu stricto with the Dalbergioid clade (Leguminosae: Papilionoideae) reveals a proneness for independent evolution of radial floral symmetry among early-branching papilionoid legumes. Taxon 61:1057–1073

    Google Scholar 

  • Choob VV, Penin AA (2004) Structure of flower in Arabidopsis thaliana: spatial pattern formation. Rus J Developm Biol 35:224–227

    Article  Google Scholar 

  • Citerne HL, Luo D, Pennington RT, Coen E, Cronk QCB (2003) A phylogenomic investigation of CYCLOIDEA-like TCP genes in the Leguminosae. Pl Physiol 131:1042–1053

    Article  CAS  Google Scholar 

  • Citerne HL, Pennington RT, Cronk QCB (2006) An apparent reversal in floral symmetry in the legume Cadia is a homeotic transformation. Proc Natl Acad Sci USA 103:12017–12020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coen E, Meyerowitz E (1991) The war of the whorls: genetic interactions in flower development. Nature 353:31–37

    Article  CAS  PubMed  Google Scholar 

  • Cronk QCB (2009) Evolution in reverse gear: the molecular basis of loss and reversal. In: Cold Spring Harbor symposia on quantitative biology, Vol 74. Cold Spring Harbor Laboratory Press, pp 259–266

  • Cubas P (2004) Floral zygomorphy, the recurring evolution of a successive trait. BioEssays 26:1175–1184

    Article  CAS  PubMed  Google Scholar 

  • Endress PK (1987) Floral phyllotaxis and floral evolution. Bot Jahrb Syst 108:417–438

    Google Scholar 

  • Endress PK (2006) Angiosperm floral evolution: morphological developmental framework. Advances Bot Res 44:1–61

    Article  Google Scholar 

  • Endress PK (2012) The immense diversity of floral monosymmetry and asymmetry across angiosperms. Bot Rev (London) 78:345–397

    Article  Google Scholar 

  • Fantz PR (1977) A monograph of the genus Clitoria (Leguminosae: Glycineae). PhD Thesis, University of Florida, Gainesville

  • Feng X, Zhao Z, Tian Z, Xu S, Luo Y, Cai Z, Wang Y, Yang J, Wang Z, Weng L, Chen J, Zheng L, Guo X, Luo J, Sato S, Tabata S, Ma W, Cao X, Hu X, Sun C, Luo D (2006) Control of petal shape and floral zygomorphy in Lotus japonicus. Proc Natl Acad Sci USA 103:4970–4975

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferrándiz C, Navarro C, Gómez MD, Cañas LA, Beltrán JP (1999) Flower development in Pisum sativum: from the war of the whorls to the battle of the common primordia. Developm Genet 25:280–290

    Article  Google Scholar 

  • Hileman LC (2014) Bilateral flower symmetry: how, when and why? Curr Opinion Pl Biol 17:146–152

    Article  Google Scholar 

  • Howarth DG, Martins T, Chimney E, Donoghue MJ (2011) Diversification of CYCLOIDEA expression in the evolution of bilateral flower symmetry in Caprifoliaceae and Lonicera (Dipsacales). Ann Bot (Oxford) 107:1521–1532

    Article  CAS  Google Scholar 

  • Jabbour F, Cossard G, Le Guilloux M, Sannier J, Nadot S, Damerval C (2014) Specific duplication and dorsoventrally asymmetric expression patterns of CYCLOIDEA-like genes in zygomorphic species of Ranunculaceae. PLoS ONE. doi:10.1371/journal.pone.0095727

    Google Scholar 

  • Lamprecht H, Mrkos H (1950) Die Vererbung des Vorblattes bei Pisum sowie die Koppelung des Gens Br. Agri Hort Genet 8:153–162

    Google Scholar 

  • Long J, Barton MK (2000) Initiation of axillary and floral meristems in Arabidopsis. Developm Biol 218:341–353

    Article  CAS  Google Scholar 

  • Maassoumi AA (2007) Two new species of the genus Astragalus L. (Fabaceae) from Iran. Iranian J Bot 13:78–81

    Google Scholar 

  • Paulino JV, Freitas Mansano V, Teixeira SP (2013) Elucidating the unusual floral features of Swartzia dipetala (Fabaceae). Bot J Linn Soc 173:303–320

    Article  Google Scholar 

  • Paulino JV, Prenner G, Mansano VF, Teixeira SP (2014) Comparative development of rare cases of a polycarpellate gynoecium in an otherwise monocarpellate family, Leguminosae. Amer J Bot 101:572–586

    Article  Google Scholar 

  • Prenner G (2004) The asymmetric androecium in Papilionoideae (Leguminosae): definition, occurrence and possible systematic value. Int J Pl Sci 165:499–510

    Article  Google Scholar 

  • Prenner G, Bateman RM, Rudall PJ (2010) Floral formulae updated for routine inclusion in formal taxonomic descriptions. Taxon 59:241–250

    Google Scholar 

  • Rodríguez-Riaño T, Ortega-Olivencia A, Devesa JA (1999) Types of androecium in the Fabaceae of SW Europe. Ann Bot (Oxford) 83:109–116

    Article  Google Scholar 

  • Rohlf FJ (2010) Tps Series. Department of Ecology and Evolution, State University of New York, Stony Brook, New York. Available at: http://life.bio.sunysb.edu/morph/

  • Ronse De Craene L (2007) Are petals sterile stamens or bracts? The origin and evolution of petals in the core eudicots. Ann Bot (Oxford) 100:621–630

    Article  Google Scholar 

  • Rudall PJ, Bateman RM (2003) Evolutionary change in flowers and inflorescences: evidence from naturally occurring terata. Trends Pl Sci 8:76–82

    Article  CAS  Google Scholar 

  • Saxena KB, Ariyanayagam RP, Reddy LJ (1992) Genetics of a high-selfing trait in pigeonpea. Euphytica 59:125–127

    Article  Google Scholar 

  • Sen N, Krishnan R (1961) Breakdown of the papilionaceous structure in the double flowers of Clitoria ternatea L. and its inheritance. Curr Sci India 30:435–436

    Google Scholar 

  • Sinjushin A (2011) On the role of genes DETERMINATE, LATE FLOWERING and FASCIATA in the morphogenesis of pea inflorescence. Ratar Povrt 48:313–320

    Article  Google Scholar 

  • Sinjushin AA (2014) Origin and variation of polymerous gynoecia in Fabaceae: evidence from floral mutants of pea (Pisum sativum L.). Pl Syst Evol 300:717–727

    Article  Google Scholar 

  • Srinivasan S, Gaur PM (2012) Genetics and characterization of an open flower mutant in chickpea. J Heredity 103:297–302

    Article  CAS  Google Scholar 

  • Tucker SC (1989) Overlapping organ initiation and common primordia in flowers of Pisum sativum (Leguminosae: Papilionoideae). Amer J Bot 76:714–729

    Article  Google Scholar 

  • Tucker SC (1991) Helical floral organogenesis in Gleditsia, a primitive caesalpinioid legume. Amer J Bot 78:1130–1149

    Article  Google Scholar 

  • Tucker SC (2000) Floral development and homeosis in Saraca (Leguminosae: Caesalpinioideae: Detarieae). Int J Pl Sci 161:537–549

    Article  Google Scholar 

  • Tucker SC (2003) Floral development in legumes. Pl Physiol 131:911–926

    Article  CAS  Google Scholar 

  • Wang Z, Luo Y, Li X, Wang L, Xu S, Yang J, Weng L, Sato S, Tabata S, Ambrose M, Rameau C, Feng X, Hu X, Luo D (2008) Genetic control of floral zygomorphy in pea (Pisum sativum L.). Proc Natl Acad Sci USA 105:10414–10419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weberling F (1989) Structure and evolutionary tendencies of inflorescences in the Leguminosae. Monogr Syst Bot Missouri Bot Gard 29:35–58

    Google Scholar 

  • Wojciechowski MF, Lavin M, Sanderson MJ (2004) A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. Amer J Bot 91:1846–1862

    Article  CAS  Google Scholar 

  • Zimmerman E, Prenner G, Bruneau A (2013) Floral morphology of Apuleia leiocarpa (Dialiinae: Leguminosae), an unusual andromonoecious legume. Int J Pl Sci 174:154–160

    Article  Google Scholar 

Download references

Acknowledgments

Authors express their gratitude to Alexandra S. Belyakova for fine photo images of Clitoria ternatea (Fig. 4b, c).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey A. Sinjushin.

Additional information

Handling editor: Louis P. Ronse De Craene.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinjushin, A.A., Bagheri, A., Maassoumi, A.A. et al. Terata of two legume species with radialized corolla: some correlations in floral symmetry. Plant Syst Evol 301, 2387–2397 (2015). https://doi.org/10.1007/s00606-015-1235-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-015-1235-9

Keywords

Navigation