Skip to main content

Advertisement

Log in

SEM investigation of pollen from the lower Eocene (Carinthia and Salzburg in Austria and Brixton, London area, in England): new findings of Vitaceae, Euphorbiaceae, Phyllanthaceae, Fabaceae, Anacardiaceae, Araliaceae and Apiaceae

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Three European lower Eocene localities comprising sediments from the Paleocene-Eocene Temperature Maximum (PETM, St Pankraz, Austria and Brixton, England) and the Early Eocene Climate Optimum (EECO, Krappfeld, Austria) have been investigated palynologically with light microscopy and scanning electron microscopy. The pollen taxa systematically investigated here have been affiliated to the following families and genera: Vitaceae gen. indet. and Parthenocissus, Euphorbiaceae s.s. (two “Bernardieae clade” types, Cephalocroton), Phyllanthaceae (two Flueggea types, Bischofia), one taxon of Euphobiaceae/Phyllanthaceae fam. indet., Fabaceae (“Millettioid clade” type), Anacardiaceae (two Anacardium types, Gluta, and Lannea), Araliaceae (A. gen. indet., two Aralia types, Panax, and Hydrocotyle) and one Apiaceae gen. indet. Further, we present here the earliest known occurrences of pollen of “Bernardieae clade” type, Cephalocroton, unknown Euphorbiaceae/Phyllanthaceae taxon, Flueggea, Bischofia, “Millettioid clade” type, Anacardium, Gluta, Aralia and Panax types in the fossil record.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson JAR, Muller J (1975) Palynological study of a Holocene peat and Miocene coal deposit from N.W. Borneo. Rev Palaeobot Palynol 19:291–351

    Article  Google Scholar 

  • Baksi SK (1976) Pollen morphology of the genera Gluta Linnaeus and Melanorrhoea Wallich. (Anacardiaceae). In: K Ferguson, J Muller (eds) The evolutionary significance of the exine. Linn Soc Symp Ser, London 1:379–405

  • Bijl PK, Schouten S, Sluijs A, Reichart GJ, Zachos JC, Brinkhuis H (2009) The early Palaeogene temperature evolution of the Southwest Pacific Ocean. Nature 461:776–779

    Article  CAS  PubMed  Google Scholar 

  • Cavillo-Canadel L, Cervalhos-Ferriz SRS (2005) Diverse assemblage of Eocene and Oligocene leguminose from Mexico. Int J Pl Sci 166:671–692

    Article  Google Scholar 

  • Cerceau-Larrival MT (1980) Umbelliferae Juss. Hydrocotyloideae drude/hydrocotyleae drude. World Pol Spore Flora 9:1–33

    Google Scholar 

  • Cervantes A, Olvera FH (2005) Six new species of Bernardia (Euphorbiaceae). Bot J Linn Soc 149:241–256

    Article  Google Scholar 

  • Chandler MEJ (1962) The lower tertiary floras of southern England II. Flora of the pipe-clay series of Dorset (lower Bagshot). Trustees of the British Museum, London, pp. 1–169

  • Chen I (2009) The history of Vitaceae inferred from morphology-based phylogeny and the fossil record of seeds. PhD-thesis Gainsville University of Florida, Florida USA, p. 326

  • Chen I, Manchester SR (2007) Seed morphology of modern and fossil Ampelocissus (Vitaceae) and implications for phytogeography. Amer J Bot 94:1534–1553

    Article  Google Scholar 

  • Chen I, Manchester SR (2011) Seed morphology of Vitaceae. Int J Pl Sci 172:1–35

    Article  Google Scholar 

  • Collinson ME (1983) Fossil plants of the London clay. Palaeontological Association Field Guide to Fossils, 1, p. 121

  • Collinson ME, Hooker JJ, Gröcke D R (2003) Cobham lignite bed and penecontemporaneous macrofloras of southern England. A record of vegetation and fire across the Paleocene–Eocene thermal maximum. In: Wing SL, Gingerich PD, Schmitz B, Thomas E (eds) Causes and consequences of globally warm climates in the early Paleogene. Special Paper Geol Soc Amer 369:333–349

  • Collinson ME, Steart D, Harrington GJ, Hooker JJ, Scott AC, Allen LO, Glasspool IJ, Gibbons SJ (2009) Palynological evidence of vegetation dynamics in response to palaeoenvironmental change across the onset of the Palaeogene-Eocene thermal maximum at Cobham, Southern England. Grana 48:38–66

    Article  Google Scholar 

  • Collinson ME, Manchester SR, Wilde V (2012) Fossil fruits and seeds of the Middle Eocene Messel biota, Germany. Abhandl Senckenberg Ges Naturforsch 570:1–251

    Google Scholar 

  • Crepet WL, Daghlian CP (1982) Euphorbioid inflorescences from the Middle Eocene Claiborne formation. Amer J Bot 69:258–266

    Article  Google Scholar 

  • Crepet WL, Herendeen PS (1992) Papilionoid flowers from the early Eocene of southwestern North America. In: Herendeen PS, Dilcher DL (eds) Advances in Legume systematics: Part 4. The fossil record. Botanical Gardens, Kew

    Google Scholar 

  • Crouch EM, Heilmann-Clausen C, Brinkhuis H, Morgans HEG, Rogers KM, Egger H, Schmitz B (2001) Global dinoflagellate event associated with the late Paleocene thermal maximum. Geology 29:315–318

    Article  CAS  Google Scholar 

  • Crouch EM, Dickens GR, Brinkhuis H, Aubry M-P, Hollis CJ, Rogers KM, Visscher H (2003) The Apectodinium acme and terrestrial discharge during the PaleoceneEocene Thermal Maximum: new palynological, geochemical and calcareous nannoplankton observations at Tawanui, New Zealand. Palaeogeogr Palaeoclimat Palaeoeco 194:387–403

    Article  Google Scholar 

  • Dilcher DL, Dolph GE (1970) Fossil leaves from Eocene sediments of southeastern North America. Amer J Bot 57:153–160

    Article  Google Scholar 

  • Dilcher DL, Manchester SR (1988) Investigations of angiosperms from the Eocene of North America: a fruit belonging to the Euphorbiaceae. Tert Res 9:45–58

    Google Scholar 

  • Egger H (2011) The early Paleogene history of the Eastern Alps. In: Egger H (ed.) Climate and Biota of the EARLY Paleogene. Field-Trip Guidebook. Ber Geol B-A 86:9–16

  • El Ghazaly GEB (1993) A study on the pollen flora of Sudan. Rev Palaeobot Palynol 76:99–345

    Article  Google Scholar 

  • Ellison RA, King C (2004) Palaeogene: Paleocene. In: Ellison RA, Woods A, Allen DJ, Forster A, Pharaoh TC, King C (eds) Geology of London, vol 4. British Geological Survey, Keyworth, pp 22–43

    Google Scholar 

  • Esser HJ (2003) Fruit characters in Malesian Euphorbiaceae. Telopea 10:169–177

    Article  Google Scholar 

  • Feng X, Cui DF, Jin J (2011) Eocene woods from South China and their palaeoclimatic implication. Abstracts CBEP 2011, Berichte Geol B-A 85, 72

  • Feng X, Oskolski AA, Jin J (2012) Eocene dicotyledonous wood, Bischofia maomingensis sp. nov. from Maoming Basin South China. Rev Palaeobot Palynol 174:101–105

    Article  Google Scholar 

  • Ferguson DK, Pingen M, Zetter R, Hofmann CC (1998) Advances in our knowledge of the Miocene plant assemblage from Kreuzau, Germany. Rev Palaeobot Palynol 101:147–177

    Article  Google Scholar 

  • Frederiksen NO (1980) Sporomorphs from the Jacjson Group (Upper Eocene) and adjacent strata of Missisippi and western Alabama. Geol Surv Prof Paper 1084:108p

    Google Scholar 

  • Gentry AH (1982) Neotropical floristic diversity: phytogeographical connections between Central and South America, Pleistocene climatic functions, or anaccident of the Andean orogeny? Ann Missouri Bot Gard 69:557–593

    Article  Google Scholar 

  • Gradstein FM, Ogg JO, Smith AG, Bleeker W, Lourens LJ (2004) A new Geologic time scale, with special reference to Precambrian and Neogene. Episodes 27:83–100

    Google Scholar 

  • Gregory MP, Poole I, Wheeler EA (2009) Fossil dicot wood names an annotated list with full bibliography. IAWA Bull Suppl 6:1–220

    Google Scholar 

  • Gruas-Cavagnetto C, Bui NS (1976) Présence de pollens d’Araliaceae dans le Paléogène Anglais et Francais. Rev Palaeobot Palynol 22:61–72

    Article  Google Scholar 

  • Gruas-Cavagnetto C, Cerceau-Larrival MT (1978) Presence des pollen Ombellifères fossile dans le Paléogene du Bassin Anglo-Parisien: Premiere resultats. Actes 2 Symposion International in Perpignan, CNRS 286:255–267

  • Gruas-Cavagnetto C, Köhler E (1992) Pollens fossile d’Euphorbiacées de l’Eocène francais. Grana 31:291–304

    Article  Google Scholar 

  • Halbritter HH (2000 and onwards) Discocleidion rufescens. In: Buchner R, Weber M (eda) PalDat—a palynological database: descriptions, illustrations, identification, and information retrieval. http://www.paldat.org

  • Henwood MJ (1991) Pollen morphology of Polyscias (Araliaceae): the Malesian and Australian species. Grana 30:559–576

    Article  Google Scholar 

  • Herendeen PS, Dilcher DL (1990) Diplotropis (Leguminosae, Papilionoideae) from the Middle Eocene of Southeastern North America. Syst Bot 15:526–533

    Article  Google Scholar 

  • Herendeen PS, Dilcher DL (eds) (1992) Advances in Legume systematics: Part 4. The fossil record. Botanical Gardens, Kew

    Google Scholar 

  • Hesse M, Halbritter H, Zetter R, Weber M, Buchner R, Frosch-Radivo Ulrich S (2009) Pollen terminology—an illustrated handbook. Springer, Wien, p 261

    Google Scholar 

  • Hoffmann P, Kathriarachchi H, Wurdack KJ (2006) A phylogenetic classification of Phyllanthaceae (Malpighiales: Euphorbiaceae sensu lato). Kew Bull 61:37–53

    Google Scholar 

  • Hofmann Ch-Ch, Zetter R (2001) Palynological investigation of the Krappfeld area, Palaeocene/Eocene, Carinthia (Austria). Palaeontogr Abt B 259:47–64

    Google Scholar 

  • Hofmann Ch-Ch, Mohamed O, Egger H (2011) A new terrestrial palynoflora from the Palaeocene/Eocene boundary in the northwestern Tethyan realm (St. Pankraz, Austria). Rev Palaeobot Palynol 166:295–310

    Article  Google Scholar 

  • Hofmann CC, Pancost R, Ottner F, Egger H, Taylor K, Zetter R (2012) Palynology Biomarker and Clay mineralogy of the Early Eocene Climate Optimum (EECO) in the transgressive Krappfeld succession (Eastern Alps, Austria). Austrian J Earth Sci 105:224–239

    Google Scholar 

  • Hofmann Ch-Ch, Egger H, King C (2015) LM and SEM investigations of pollen from the PETM and EECO localities of Austria and Great Britain: new findings of Atherospermataceae, Annonaceae, Araceae, and Arecaceae from the Lower Eocene. Pl Syst Evol 301:773–793

    Article  CAS  Google Scholar 

  • Hollis JC et al (2009) Tropical sea temperatures in the high-latitude South Pacific during the Eocene. Geology 37:99–102

    Article  CAS  Google Scholar 

  • Hou D (1978) Anacardiaceae. Flora Malesiana 1 Series 8:395–548

  • Hsu Y-C, Huang T-C (2001) A palynological study of the tribe Millettieae (Fabaceae) in Taiwan. Taiwania 46:21–39

    Google Scholar 

  • Hu JM, Lavin M, Wojciechowski MF, Sanderson MJ (2000) Phylogenetic systematics of the tribe Millettieae (Leguminosae) based on chloroplast TRNK/MATK sequences and its implications for evolutionary patterns. Amer J Bot 87:418–430

    Article  CAS  Google Scholar 

  • Jaramillo CA, Ochoa D, Contreras L, Pagani M, Caraval-Ortiz H, Pratt LM, Krishnan S, Cardona A, Romero M, Quiroz L, Rodriguez G, Rueda MJ, de la Parra F, Morón S, Gree W, Bayona G, Montes C, Quintero O, Ramirez R, Mora G, Schouten S, Bermudez H, Navarrete R, Parr F, Alvarán M, Osorno J, Crowley JL, Valencia V, Vervoort J (2010) Effects of rapid global warming at the Palaeocene-Eocene boundary on neotropical vegetation. Science 330:957–960

    Article  CAS  PubMed  Google Scholar 

  • Kedves M (1969) Palynological studies on Hungarian early tertiary deposits. Akadémiai Kiadó, Publishing house of the Hungarian Acedemy of Sciences, Budapest, p 128

    Google Scholar 

  • Knobloch E, Mai D (1986) Monographie der Früchte und Samen in der Kreide von Mitteleuropa. Rozpravy ústredního ústavu geologickélho 47:219p

    Google Scholar 

  • Köhler E (1965) Die Pollenmorphologie der biovulaten Euphorbiaceae und ihre Bedeutung für die Taxonomie. Grana 6:26–120

    Google Scholar 

  • Köhler E (1967) Über Beziehungen zwischen Pollenmorphologie und Polyploidiestufen im Verwandtschaftsbereich der Gattung Phyllanthus (Euphorbiaceae). Feddes Repert 74:159–165

    Article  Google Scholar 

  • Li R, Wen J (2013) Phylogeny and Biogeography of Dendropanax (Araliaceae), an amphi-pacific disjunct genus between tropical/subtropical Asia and the Neotropics. Syst Bot 38:536–551

    Article  Google Scholar 

  • Lu L, Wen J, Chen Z (2012) A combined morphological and molecular phylogenetic analysis of Parthenocissus (Vitaceae) and taxonomic applications. Bot J Linn Soc 168:43–63

    Article  Google Scholar 

  • Magallón S, Castillo A (2009) Angiosperm diversification through time. Amer J Bot 96:349–365

    Article  Google Scholar 

  • Mai D (1976) Fossile Früchte und Samen aus dem Mitteleozän des Geiseltales. Abhandl Zentral Geol Inst 26:93–149

    Google Scholar 

  • Mai D, Walther H (1978) Die Floren der Haselbacher Serie im Weißelster Becken (Berzirk Leipzig, DDR). Abhandl Staatl Mus Miner Geol Dresd 28:1–200

    Google Scholar 

  • Manchester SR (1994) Fruits and seeds of the Middle Eocene Nut Bed flora, Clarno Formation, North Central Oregon. Paleontogr Amer 58:1–205

    Google Scholar 

  • Manchester SR, Wilde V, Collinson ME (2007) Fossil Cashew nuts from the Eocene of Europe: biogeographic links between Africa and South America. Int J Pl Sci 168:1199–1206

    Article  Google Scholar 

  • Manchester SR, Kapgate DK, Wen J (2013) Oldest fruits of the grape family (Vitaceae) from the Late Cretaceous Deccan Cherts of India. Amer J Bot 100:1849–1859

    Google Scholar 

  • Miyoshi N, Fujiki T, Kimura H (2011) Pollen flora of Japan. Hokaido University Press, Sapporo, p 824

    Google Scholar 

  • Muller J (1981) Fossil pollen record od extant angiosperms. Bot Rev 47:1–142

    Article  Google Scholar 

  • Nicolas AN, Plunkett GM (2009) The demise of subfamily Hydrocotyloideae (Apiaceae) and the re-alignment of its genera across the entire order of Apiales. Molec Phylogen Evol 53:134–151

    Article  CAS  Google Scholar 

  • Nie ZL, Sun H, Chen ZD, Meng Y, Manchester SR, Wen J (2010) Molecular phylogeny and biogeographic diversification of Parthenocissus (Vitaceae) disjunct between Asia and North America. Amer J Bot 97:1342–1353

    Article  Google Scholar 

  • Nowicke JW, Takahashi M, Webster GL (1998) Pollen morphology, exine structure and systematics of Acalyphoideae (Euphorbiaceae) Part 1. Tribes Clutiae (Clutia), Pogonophorae (Pogonophora), Chaetocarpeae (Chaetocarpus, Trigonopleura), Pereae (Pera), Cheiloseae (Cheilosa, Neoscortechinia), Erismanthae pro parte (Erismanthus, Moultonianthus), Dicoelieae (Dicoelia), Galearieae (Galearia, Microdesmis, Panda) and Ampereae (Ampera, Monotaxis). Rev Palaeobot Palynol 102:115–152

    Article  Google Scholar 

  • Nowicke JW, Takahashi M, Webster GL (1999) Pollen morphology, exine structure and systematics of Acalyphoideae (Euphorbiaceae) Part 2. Tribes Agrostistachydeae (Agrostachys, Pseudoagrostachys, Cyttaranthus, Chondrostylis). Chrozophoreae (Speranskia, Caperonia, Philyra, Ditaxis, Argythamnia, Chiropetalum, Doryxylon, Sumbaviopsis, Thyrsanthera, Melanolepis, Chrozophora), Caryodendreae (Caryodendron, Discoglypremna, Alchorneopsis), Bernardieae (Bernardia, Necepsia, Paranecepsia, Discocleidion, Adenphaedra), and Pycnocomeae (Pycnocoma, Drocelonica, Argomuellera, Blumenodendron, Podadenia, Ptychopyxis, Botryophora). Rev Palaeobot Palynol 105:1–62

    Article  Google Scholar 

  • Nucete M, Van Konijnenburg-van Cittert JHA, van Welzen PC (2012) Fossils and palaeontological distributions of Macaranga and Mallotus (Euphorbiaceae). Palaeogeogr Palaeoclim Palaeoecol 353–355:104–115

    Article  Google Scholar 

  • Pearson N, van Dongen BE, Nicholas CJ, Pancost RD, Schouten S, Singano JM, Wade BS (2007) Stable warm tropical climate through the Eocene Epoch. Geology 35:211–214

    Article  Google Scholar 

  • Pell SK (2004) Molecular systematics of the Cashew Family (Anacardiaceae). Doctoral Dissertation of the Louisiana State University, Baton Rouge, Louisiana

  • Plunkett GM, Wen J, Lowry PP (2004) Infrafamilial classifications and characters in Araliaceae: insights from phylogenetic analysis of nuclear (ITS) and plastid (trnL-trnF) sequence data. Pl Syst Evol 245:1–39

    Article  CAS  Google Scholar 

  • Poole I, Davies C (2001) Glutoxylon Chowdhury (Anacardiaceae): the first record of fossil wood from Bangladesh. Rev Palaeobot Palynol 113:261–271

    Article  PubMed  Google Scholar 

  • Polle I, Wilkinson HP (2000) Two early Eocene vines from south-east England. Bot J Linn Soc 133:1–26

    Article  Google Scholar 

  • Pross J et al (2012) Persistence near-tropical warmth on the Anarctic continent during the early Eocene Epoch. Nature 7400:73–77

    Article  Google Scholar 

  • Punt W (1962) Pollen morphology of the Euphorbiaceae with special reference to taxonomy. Wentia 7:1–116

    Article  Google Scholar 

  • Rasoarimalala L, Albers F, Straka H (1982) Palynologica Madagassica et Mascarenica Fam 112–119. Pollen Spores 24:65–91

    Google Scholar 

  • Reid EM (1927) Tertiary seeds and fruits from St, Tudy (Finistere) collected by the late Henri de Laurens de la Barre. Bull Soc Géol Minér Bretagne 8:36–65

    Google Scholar 

  • Reid EM, Chandler MEJ (1933) The London clay flora. British Museum, London

    Google Scholar 

  • Reille M (1967) Contribution a l’étude palinologique de la famille des Vitacées. Pollen Spores 9:279–303

    Google Scholar 

  • Sagun VG, Van der Ham RWJM (2003) Pollen morphology of the Flueggeinae (Euphorbiaceae, Phyllanthoideae). Grana 42:193–219

    Article  Google Scholar 

  • Schaub H (1981) Nummulites et Assilines de la Tethys paléogene. Taxonomie, phylogenese et biostratigraphie. Schweiz Paläontolog Abhandl 104–106:1–236

    Google Scholar 

  • Senesse S, Gruas-Cavagnetto C (1990) Caesalpiniaepollenites (Caesalpinoideae, Légumineuse) un nouvelle forme de genre dans l´Eocène inférieur de Bassin de Paris. Position systématique et phylogénétique. Rev Palaeobot Palynol 66:13–24

    Article  Google Scholar 

  • Serra-Kiel J, Hottinger L, Caus E, Drobne K, Ferrandez C, Jaurhi AK, Less G, Pavlovec R, Pignatti J, Samso JM, Schaub H, Sirel E, Strougo A, Tambareau Y, Tosquella J, Zakrevskaya E (1998) Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. Soc Géol Fr Bull 169:281–299

    Google Scholar 

  • Simpson MG, Levin GA (1994) Pollen ultrastructure of the biovulate Euphorbiaceae. Int J Pl Sci 155:313–341

    Article  Google Scholar 

  • Sluijs A, Schouten S, Pagani M, Woltering M, Brinkhuis H, Sinninghe Damsté JS, Dickens JR, Huber M, Reichert GJ, Stein R, Matthiessen J, Lourens LJ, Pendentschouk N, Backman J, Moran K (2006) Subtropical Arctic ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature 441:610–612

    Article  CAS  PubMed  Google Scholar 

  • Sluijs A, Bowen GJ, Brinkhuis H, Lourens LJ, Thomas E (2007) The Palaeocene-Eocene thermal maximum super greenhouse: biotic and geochemical signatures, age models and mechanisms of global change. In: Williams M, Haywood AM, Gregory J, Schmidt DN (eds) Deep-time perspectives on climate change: marrying the signal from computer models and biological proxies. Micropal Soc Spec Publ, Geological Society London, London, p. 323–349

  • Soejima A, Wen J (2006) Phylogenetic analysis of the grape family (Viatceae) based on three chloroplast markers. Amer J Bot 93:278–287

    Article  CAS  Google Scholar 

  • Sowunmi MA (1995) Pollen of Nigerian plants. Grana 34:120–141

    Article  Google Scholar 

  • Stevens PF (2001 onwards) Angiosperm Phylogeny Website. Version 12, July 2012 and more or less continuously updated since. http://www.mobot.org/MOBOT/research/APweb/

  • Takahashi M, Nowicke JW, Webster GL, Orli SS, Yankowski S (2000) Pollen morphology, exine structure, systematics of Acalyphoideae (Euphorbiaceae), part 3. Tribes Epiprineae (Epiprinus, Symphyllia, Adenochlaena, Cleidiocarpon, Koilodepas, Cladogynos, Cephalocrotonopsis, Cephalocroton, Cephalomappa), Adelieae (Adelia, Crotonogynopsis, Enriquebeltrania, Lasiocroton, Leucocroton), Alchorneae (Orfilia, lchornea, Coelebogyne, Aparisthmium, Bocquillonia, Conceveiba, Gavarretia), Acalypheae pro parte (Ricinus, Adriana, Merculrialis, Leidesia, Dysopsis, Wetria, Cleidion, Sampantaea, Macaranga). Rev Palaeobot Palynol 110:1–66

    Article  PubMed  Google Scholar 

  • The Australasian Pollen and Spore Atlas V1.0. Australian National University, Canberra. http://apsa.anu.edu.au/

  • Thiry M, Dupuis C, Aubry M-P, Berggren WA, Ellison RA, Knox RWO, Sinha A, Stott L (1998) Tentative correlations between continental deposits of the argiles plastiques (Paris Basin) and Reading Beds (London Basin), based on chemostratigraphy. Strata 9:125–129

    Google Scholar 

  • Tissot C, Chikhi H, Nayar TS (1994) Pollen of wet evergreen forests of the Western Ghats India. Institut Francais de Pondichéry Publications du Départements d Écologie 1–133

  • Tseng CC, Shoup JR, Chuang TL, Hsieh WC (1983) Pollen morphology of Acanthopanax (Araliaceae). Grana 22:11–17

    Article  Google Scholar 

  • Van Hillebrand A (1993) Nummuliten und Assilinen aus dem Eozän des Krappfeldes in Kärnten (Österreich). Zitteliana 20:277–293

    Google Scholar 

  • Wang HC, Moore MJ, Soltis PS, Bell CD, Brockington SF, Alexandre R, Davies CC, Latvis M, Manchester SR, Soltis DE (2009) Rosid radiation and the rapid rise of angiosperm-dominated forests. PNAS 106:3853–3858

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Webster GL (1984) A revision of Flueggea (Euphorbiaceae). Allertonia 3:259–312

    Google Scholar 

  • Wen J (2001) Evolution of the Aralia-Panax Complex (Araliaceae) as inferred from nuclear ribosomal sequences. Edinbourough J Bot 58:243–257

    Google Scholar 

  • Wen J (2011) Systematics and biogeography of Aralia L. (Araliaceae): revision of Aralia Sects. Aralia, Humiles, Nanae, and Sciadodendron. Smithonian Institution Contributions from the United States National Herbarium 57:1–172

  • Wen J, Nowicke JW (1999) Pollen ultrastructure of Panax (the Ginseng genus, Araliaceae), an eastern Asian and eastern North American disjunct genus. Amer J Bot 86:1624–1636

    Article  CAS  Google Scholar 

  • Wen J, Zimmer EA (1996) Phylogeny and Biogeography of Panax L. (the ginseng genus, Araliaceae): inferences from ITS sequences of nuclear ribosomal DNA. Molec Phylogen Evol 6:167–177

    Article  CAS  Google Scholar 

  • Wen J, Shi SH, Jansen RK, Zimmer EA (1998) Phylogeny and Biogeography of Aralia Sect. Aralia (Araliaceae. Amer J Bot 85:866–875

    Article  CAS  Google Scholar 

  • Wen J, Plunkett GM, Mitchell AD, Wagstaff SJ (2001) The evolution of Araliaceae: a phylogenetic analysis based on ITS sequences of nuclear ribosomal DNA. Syst Bot 26:141–167

    Google Scholar 

  • Wheeler EA, LaPasha CA (1994) Woods of Vitaceae—fossil and modern. Rev Palaeobot Palynol 80:175–207

    Article  Google Scholar 

  • Wilde V, Frankenhäuser H (2010) A new species of four-winged fruits (Trilobium maii sp. nov.) from the middle Eocene of Eckfeld (Eifel, Germany). Rev Palaeobot Palynol 159:143–151

    Article  Google Scholar 

  • Wing SL, Harrington GJ (2001) Floral response to rapid warming in the earliest Eocene and implications for concurrent faunal change. Paleobiology 27:539–563

    Article  Google Scholar 

  • Wing SL, Harrington GJ, Bowen GJ, Koch PL (2003) Floral change during the Initial Eocene Thermal Maximum in the Powder River Basin, Wyoming. In: Aubry MP, Lucas SG, Berggren WA (eds) Late Palaeocene—Early Eocene climatic and biotic events in the marine and terrestrial records. Columbia University Press, New York, pp 380–400

    Google Scholar 

  • Wing SL, Harrington GJ, Smith FA, Bloch JI, Boyer DM, Freeman KH (2005) Transient floral change and rapid global warming at the Palaeocene-Eocene boundary. Science 310:993

    Article  CAS  PubMed  Google Scholar 

  • Wojciechowski MF, Lavin M, Sanderson MJ (2004) A phylogeny of legumes (Leguminosae) based on analysis of the plastid MATK Gene resolves many well-supported subclades within the family. Amer J Bot 91:1846–1862

    Article  CAS  Google Scholar 

  • Wolfe JA (1979) Temperature parameters of humid to mesic forests of Eastern asia and relation to forests of other regions of the northern hemisphere and Australasia. Geol Surv Prof Paper 1106:1–37

    Google Scholar 

  • Wurdack KJ, Hoffmann P, Samuel R, De Bruijn A, van der Bank M, Chase MW (2004) Molecular phylogenetic analysis of Phyllanthaceae (Phyllanthoideae pro parte, Euphorbiaceae sensu lato) using plastid RBCL DNA sequences. Amer J Bot 91:1882–1900

    Article  CAS  Google Scholar 

  • Wurdack KJ, Hoffmann P, Chase MW (2005) Molecular phylogenetic analysis of uniovulate Euphorbiaceae (Euphorbiaceae sensu stricto) using plastid RBCL and TRNL_F DNA sequences. Amer J Bot 92:1397–1420

    Article  CAS  Google Scholar 

  • Westerhold T, Röhl U, Laskar J, Raffi I, Bowles J, Lourens L, Zachos JC (2007) On the duration of magnetochrons C24r and C25n and the timing of the early Eocene global warming events: Implications from the Ocean Drilling Program Leg 208 Walvis Ridge depth transect. Paleoceanography 22:PA2201. doi:10.1029/2006PA001322

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  CAS  PubMed  Google Scholar 

  • Zachos JC, Mc Carren H, Murphy B, Röhl U, Westerhold T (2010) Tempo and scale of late Paleocene and early Eocene isotope cycles: implication for the origin of hyperthermals. Earth Planet Sci Lett 299:242–249

    Article  CAS  Google Scholar 

  • Zetter R, Hofmann CC (2001) New aspects of the palynoflora of the lowermost Eocene (Krappfeld Area, Carinthia). Österreichische Akademie der Wissenschaften, Schriftenreihe der Erdwissenschaftlichen Kommission 12:473–507

Download references

Acknowledgments

We thank Stjepan Coríc for assistance in the field, A. Hugh N. Rice for correcting the English manuscript, and the two reviewers for their careful reviews. This publication is in honour of Chris King, who sadly passed away during the writing stage of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christa-Charlotte Hofmann.

Additional information

Handling editor: Jürg Schönenberger.

C. King: deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofmann, CC., Egger, H. & King, C. SEM investigation of pollen from the lower Eocene (Carinthia and Salzburg in Austria and Brixton, London area, in England): new findings of Vitaceae, Euphorbiaceae, Phyllanthaceae, Fabaceae, Anacardiaceae, Araliaceae and Apiaceae. Plant Syst Evol 301, 2291–2312 (2015). https://doi.org/10.1007/s00606-015-1229-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-015-1229-7

Keywords

Navigation