Skip to main content
Log in

(rkab)-Stability of hypersurfaces in space forms

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In a Riemannian space form, we define the (rkab)-stability concerning closed hypersurfaces, where r and k are entire numbers satisfying the inequality \(0\le k<r\le n-2\) and a and b are real numbers (at least one nonzero). In this context, when \(b=0\), we provide a characterization of the geodesic spheres as critical points of the Jacobi functional associated with the notion of (rka, 0)-stability. Moreover, in the case \(b\not =0\), by supposing that a hypersurface \(\Sigma ^n\) is contained either in an open hemisphere of the Euclidean sphere or in the Euclidean space or in the hyperbolic space, and considering some appropriate restrictions on the constants a and b, we are able to show that \(\Sigma ^n\) is (rkab)-stable if, and only if, \(\Sigma ^n\) is a geodesic sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alencar, H., Colares, A.G.: Integral formulas for the \(r\)-mean curvature linearized operator of a hypersurface. Ann. Glob. Anal. Geom. 16, 203–220 (1998)

    Article  MathSciNet  Google Scholar 

  2. Alencar, H., do Carmo, M., Colares, A.G.: Stable hypersurfaces with constant scalar curvature. Math. Z. 213, 117–131 (1993)

    Article  MathSciNet  Google Scholar 

  3. Barbosa, J.L.M., Colares, A.G.: Stability of hypersurfaces with constant \(r\)-mean curvature. Ann. Glob. Anal. Geom. 15, 277–297 (1997)

    Article  MathSciNet  Google Scholar 

  4. Barbosa, J.L.M., do Carmo, M.: Stability of hypersurfaces with constant mean curvature. Math. Z 185, 339–353 (1984)

    Article  MathSciNet  Google Scholar 

  5. Barbosa, J.L.M., do Carmo, M., Eschenburg, J.: Stability of hypersurfaces with constant mean curvature in Riemannian manifolds. Math. Z 197, 123–138 (1988)

    Article  MathSciNet  Google Scholar 

  6. Chen, H., Wang, X.: Stability and eigenvalue estimates of linear Weingarten hypersurfaces in a sphere. J. Math. Anal. Appl. 397, 658–670 (2013)

    Article  MathSciNet  Google Scholar 

  7. Cheng, S.Y., Yau, S.T.: Hypersurfaces with constant scalar curvature. Math. Ann. 225, 195–204 (1977)

    Article  MathSciNet  Google Scholar 

  8. Cheng, X., Rosenberg, H.: Embedded positive constant \(r\)-mean curvature hypersurfaces in \(M^m\times {\mathbb{R}}\). Ann. Braz. Acad. Sci. 77, 183–199 (2005)

    Article  Google Scholar 

  9. Colares, A.G., da Silva, J.F.: Stable hypersurfaces as minima of the integral of an anisotropic mean curvature preserving a linear combination of area and volume. Math. Z 1–2, 595–623 (2013)

    Article  MathSciNet  Google Scholar 

  10. da Silva, J.F., de Lima, H.F., Velásquez, M.A.L.: The stability of hypersurfaces revisited. Monatshefte für Mathematik 179(2), 293–303 (2016)

    Article  MathSciNet  Google Scholar 

  11. de Lima, H.F., Velásquez, Marco A.L.: A new characterization of \(r\)-stable hypersurfaces in space forms. Arch. Math. 47, 119–131 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Elbert, M.F.: Contant positive \(2\)-mean curvature hypersurfaces. Illinois J. Math. 46, 247–267 (2002)

    Article  MathSciNet  Google Scholar 

  13. Gärding, L.: An inequality for hyperbolic polynomials. J. Math. Mech. 8, 957–965 (1959)

    MathSciNet  MATH  Google Scholar 

  14. Hardy, G., Littlewood, J.E., Pólya, G.: Inequalities, 2nd edn. Cambridge Mathematical Library, Cambridge (1989)

    MATH  Google Scholar 

  15. He, Y., Li, H.: Stability of area-preserving variations in space forms. Ann. Glob. Anal. Geom. 34, 55–68 (2008)

    Article  MathSciNet  Google Scholar 

  16. Koh, S.E.: A characterization of round spheres. Proc. Am. Math. Soc. 126, 3657–3660 (1998)

    Article  MathSciNet  Google Scholar 

  17. Reilly, R.: Variational properties of functions of the mean curvatures for hypersurfaces in space forms. J. Differ. Geom. 8, 465–477 (1973)

    Article  MathSciNet  Google Scholar 

  18. Rosenberg, H.: Hypersurfaces of constant curvature in space forms. Bull. Sci. Math. 117, 217–239 (1993)

    MathSciNet  MATH  Google Scholar 

  19. Velásquez, M.A., de Sousa, A.F., de Lima, H.F.: On the stability of hypersurfaces in space forms. J. Math. Anal. Appl. 406, 134–146 (2013)

    Article  MathSciNet  Google Scholar 

  20. Xin, Y.: Minimal submanifolds and related topics. World Scientific Publishing, Singapore (2003)

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for his/her valuable suggestions and useful comments which enable them to improve this paper. The first author is partially supported by CNPq, Brazil, grant 311224/2018-0. The second author is partially supported by CNPq, Brazil, grant 303977/2015-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. L. Velásquez.

Additional information

Communicated by P. Chrusciel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velásquez, M.A.L., de Lima, H.F., da Silva, J.F. et al. (rkab)-Stability of hypersurfaces in space forms. Monatsh Math 192, 939–964 (2020). https://doi.org/10.1007/s00605-020-01428-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-020-01428-1

Keywords

Mathematics Subject Classification

Navigation