Skip to main content
Log in

Comparison theorems for conjoined bases of linear Hamiltonian systems without monotonicity

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In this paper we generalize comparison results for conjoined bases \(Y(t),{{\hat{Y}}}(t)\) of two linear Hamiltonian differential systems proved by Elyseeva (J Math Anal Appl 444:1260–1273, 2016). In our consideration we do not impose classical monotonicity assumptions such that the majorant condition \({\mathcal {H}}(t)-\hat{\mathcal {H}}(t)\ge 0\) for their Hamiltonians \({\mathcal {H}}(t), \hat{\mathcal {H}}(t)\) and the Legendre conditions for \({\mathcal {H}}(t),\hat{\mathcal {H}}(t)\). Our new comparison theorems are presented in terms of the so-called oscillation numbers associated with \(Y(t), {{\hat{Y}}}(t),\) and the transformed conjoined basis \({\hat{Z}}^{-1}(t)Y(t)\), where \({\hat{Z}}(t)\) is a symplectic fundamental solution matrix of the Hamiltonian system with the Hamiltonian \(\hat{\mathcal {H}}(t)\). The consideration is based on the comparative index theory applied to the continuous case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramov, A.A.: On the computation of the eigenvalues of a nonlinear spectral problem for Hamiltonian systems of ordinary differential equations. Comput. Math. Math. Phys. 41(1), 27–36 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Abramov, A.A.: A modification of one method for solving nonlinear self-adjoint eigenvalue problems for Hamiltonian systems of ordinary differential equations. Comput. Math. Math. Phys. 51(1), 35–39 (2011)

    Article  MathSciNet  Google Scholar 

  3. Bohner, M., Došlý, O.: Disconjugacy and transformations for symplectic systems. Rocky Mt. J. Math. 27, 707–743 (1997)

    Article  MathSciNet  Google Scholar 

  4. Bohner, M., Kratz, W., Šimon Hilscher, R.: Oscillation and spectral theory for linear Hamiltonian systems with nonlinear dependence on the spectral parameter. Math. Nachr. 285(11–12), 1343–1356 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Došlý, O., Kratz, W.: Singular Sturmian theory for linear Hamiltonian differential systems. Appl. Math. Lett. 26, 1187–1191 (2013)

    Article  MathSciNet  Google Scholar 

  6. Došlý, O.: Relative oscillation of linear Hamiltonian differential systems. Math. Nachr. 290(14–15), 2234–2246 (2017)

    Article  MathSciNet  Google Scholar 

  7. Došlý, O., Elyseeva, J., Šimon Hilscher, R.: Symplectic Difference Systems: Oscillation and Spectral Theory. Birkhäuser, Basel (2019)

    Book  Google Scholar 

  8. Elyseeva, J.V.: On symplectic transformations of linear Hamiltonian differential systems without normality. Appl. Math. Lett. 68, 33–39 (2017)

    Article  MathSciNet  Google Scholar 

  9. Elyseeva, J.: The comparative index and transformations of linear Hamiltonian differential systems. Appl. Math. Comput. 330, 185–200 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Eliseeva, Yu.: Comparative index for solutions of symplectic difference systems. Differ. Equ. 45, 445–459 (2009)

    Article  MathSciNet  Google Scholar 

  11. Eliseeva, Y.V.: Comparison theorems for symplectic systems of difference equations. Differ. Equ. 46(9), 1339–1352 (2010)

    Article  MathSciNet  Google Scholar 

  12. Elyseeva, J.: Comparison theorems for conjoined bases of linear Hamiltonian differential systems and the comparative index. J. Math. Anal. Appl. 444, 1260–1273 (2016)

    Article  MathSciNet  Google Scholar 

  13. Elyseeva, J.: Oscillation theorems for linear Hamiltonian systems with nonlinear dependence on the spectral parameter and the comparative index. Appl. Math. Lett. 90, 15–22 (2019)

    Article  MathSciNet  Google Scholar 

  14. Elyseeva, J.V., Šimon Hilscher, R.: Discrete oscillation theorems for symplectic eigenvalue problems with general boundary conditions depending nonlinearly on spectral parameter. Linear Algebra Appl. 558, 108–145 (2018)

    Article  MathSciNet  Google Scholar 

  15. Gesztesy, F., Simon, B., Teschl, G.: Zeros of the Wronskian and renormalized oscillation theory. Am. J. Math. 118, 571–594 (1996)

    Article  MathSciNet  Google Scholar 

  16. Gesztesy, F., Zinchenko, M.: Renormalized oscillation theory for Hamiltonian systems. Adv. Math. 311, 569–597 (2017)

    Article  MathSciNet  Google Scholar 

  17. Howard, P., Jung, S., Kwon, B.: The Maslov Index and spectral counts for linear Hamiltonian systems on \([0, 1]\). J. Dyn. Differ. Equ. 30, 1703–1729 (2018)

    Article  MathSciNet  Google Scholar 

  18. Howard, P., Sukhtayev, A.: Renormalized oscillation theory for linear Hamiltonian systems on \([0, 1]\) via the Maslov Index (2018). arXiv:1808.08264 [math.CA]

  19. Johnson, R., Obaya, R., Novo, S., Núñez, C., Fabbri, R.: Nonautonomous Linear Hamiltonian Systems: Oscillation, Spectral Theory and Control. Springer, Berlin (2016)

    Book  Google Scholar 

  20. Kratz, W.: Quadratic Functionals in Variational Analysis and Control Theory. Mathematical Topics, vol. 6. Akademie Verlag, Berlin (1995)

    MATH  Google Scholar 

  21. Kratz, W.: Definiteness of quadratic functionals. Analysis (Munich) 23(2), 163–183 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Kratz, W., Šimon Hilscher, R.: Rayleigh principle for linear Hamiltonian systems without controllability. ESAIM Control Optim. Calc. Var. 18, 501–519 (2012)

    Article  MathSciNet  Google Scholar 

  23. Krüger, H., Teschl, G.: Relative oscillation theory, weighted zeros of the Wronskian, and the spectral shift functions. Commun. Math. Phys. 287, 613–640 (2009)

    Article  MathSciNet  Google Scholar 

  24. Reid, W.T.: Principal solutions of non-oscillatory self-adjoint linear differential systems. Pac. J. Math. 8(1), 147–170 (1958)

    Article  MathSciNet  Google Scholar 

  25. Reid, W.T.: Sturmian Theory for Ordinary Differential Equations. Springer, Berlin (1980)

    Book  Google Scholar 

  26. Šepitka, P., Šimon Hilscher, R.: Minimal principal solutions at infinity for nonoscillatory linear Hamiltonian systems. J. Dyn. Differ. Equ. 26, 2657–2691 (2014)

    Article  MathSciNet  Google Scholar 

  27. Šepitka, P., Šimon Hilscher, R.: Comparative index and Sturmian theory for linear Hamiltonian systems. J. Differ. Equ. 262, 914–944 (2017)

    Article  MathSciNet  Google Scholar 

  28. Šepitka, P., Šimon Hilscher, R.: Focal points and principal solutions of linear Hamiltonian systems revisited. J. Differ. Equ. 264(9), 5541–5576 (2018)

    Article  MathSciNet  Google Scholar 

  29. Šimon Hilscher, R.: Sturmian theory for linear Hamiltonian systems without controllability. Math. Nachr. 284(7), 831–843 (2011)

    Article  MathSciNet  Google Scholar 

  30. Šimon-Hilscher, R.: On general Sturmian theory for abnormal linear Hamiltonian systems. Discrete Continuous Dyn. Syst. 2011, 684–691 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Wahrheit, M.: Eigenvalue problems and oscillation of linear Hamiltonian systems. Int. J. Differ. Equ. 2(2), 221–244 (2007)

    MathSciNet  Google Scholar 

  32. Yakubovich, V.A.: Arguments on the group of symplectic matrices. Mat. Sb. 55(97), 255–280 (1961). (in Russian)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported by Federal Programme of Ministry of Education and Science of the Russian Federation in the framework of the state order (Grant No. 2014/105) and the Czech Science Foundation under Grant GA19-01246S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Elyseeva.

Additional information

Communicated by Adrian Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elyseeva, J. Comparison theorems for conjoined bases of linear Hamiltonian systems without monotonicity. Monatsh Math 193, 305–328 (2020). https://doi.org/10.1007/s00605-020-01378-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-020-01378-8

Keywords

Mathematics Subject Classification

Navigation