Skip to main content
Log in

On static manifolds and related critical spaces with zero radial Weyl curvature

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

The aim of this paper is to study compact Riemannian manifolds \((M,\,g)\) that admit a non-constant solution to the system of equations

$$\begin{aligned} -\Delta f\, g+Hess f-fRic=\mu Ric+\lambda g, \end{aligned}$$

where Ric is the Ricci tensor of g whereas \(\mu \) and \(\lambda \) are two real parameters. More precisely, under assumption that \((M,\,g)\) has zero radial Weyl curvature, this means that the interior product of \(\nabla f\) with the Weyl tensor W is zero, we shall provide the complete classification for the following structures: positive static triples, critical metrics of volume functional and critical metrics of the total scalar curvature functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrozio, L.: On static three-manifolds with positive scalar curvature. J. Differ. Geom. 107, 1–45 (2017)

    Article  MathSciNet  Google Scholar 

  2. Baltazar, H.: On critical point equation of compact manifolds with zero radial Weyl curvature. Geom. Dedicata 202, 337–355 (2017)

    Article  MathSciNet  Google Scholar 

  3. Baltazar, H., Batista, R., Bezerra, K.: On the volume functional of compact manifolds with boundary with harmonic Weyl tensor. arXiv:1710.06247v1 [math.DG] (2017)

  4. Baltazar, H., Da Silva, A., Oliveira, F.: Weakly Einstein critical metric of the volume functional of compact manifolds with boundary. arXiv:1804.10706v1 [math.DG] (2018)

  5. Baltazar, H., Ribeiro Jr., E.: Critical metrics of the volume functional on manifolds with boundary. Proc. Am. Math. Soc. 145, 3513–3523 (2017)

    Article  MathSciNet  Google Scholar 

  6. Baltazar, H., Ribeiro Jr., E.: Remarks on critical metrics of the scalar curvature and volume functionals on compact manifolds with boundary. Pac. J. Math. 1, 29–45 (2018)

    Article  MathSciNet  Google Scholar 

  7. Baltazar, H., Diógenes, R., Ribeiro Jr., E.: Volume functional of compact manifolds with prescribed boundary metric. arXiv:1709.07839v1 [math.DG] (2017)

  8. Barbosa, E., Lima, L., Freitas, A.: The generalized Pohozaev-Schoen identity and some geometric applications. Commun. Anal. Geom. arXiv:1607.03073v1 [math.DG] (2016)

  9. Barros, A., da Silva, A.: Rigidity for critical metrics of the volume functional. Math. Nachr. 292, 709–719 (2019)

    Article  MathSciNet  Google Scholar 

  10. Barros, A., Diógenes, R., Ribeiro Jr., E.: Bach-Flat critical metrics of the volume functional on 4-dimensional manifolds with boundary. J. Geom. Anal. 25, 2698–2715 (2015)

    Article  MathSciNet  Google Scholar 

  11. Barros, A., Ribeiro Jr., E.: Critical point equation on four-dimensional compact manifolds. Math. Nachr. 287, 1618–1623 (2014)

    Article  MathSciNet  Google Scholar 

  12. Barros, A., Leandro, B., Ribeiro Jr., E.: Critical metrics of the total scalar curvature functional on 4-manifolds. Math. Nachr. 288(16), 1814–1821 (2015)

    Article  MathSciNet  Google Scholar 

  13. Batista, R., Diógentes, R., Ranieri, M., Ribeiro Jr., E.: Critical metrics of the volume functional on compact three-manifolds with smooth boundary. J. Geom. Anal. 27, 1530–1547 (2017)

    Article  MathSciNet  Google Scholar 

  14. Besse, A.: Einstein Manifolds. Springer, Berlin (1987)

    Book  Google Scholar 

  15. Böhm, C.: Inhomogeneous Einstein metrics on low-dimensional spheres and other low-dimensional spaces. Invent. Math. 134, 145 (1998)

    Article  MathSciNet  Google Scholar 

  16. Boucher, W., Gibbons, G., Horowitz, G.: Uniqueness theorem for anti-de Sitter spacetime. Phys. Rev. D. 30, 2447 (1984)

    Article  MathSciNet  Google Scholar 

  17. Chang, J., Hwang, S., Yun, G.: Rigidity of the critical point equation. Math. Nachr. 283, 846–853 (2010)

    Article  MathSciNet  Google Scholar 

  18. Chang, J., Hwang, S., Yun, G.: Critical point metrics of the total scalar curvature. Bull. Korean Math. Soc. 49, 655–667 (2012)

    Article  MathSciNet  Google Scholar 

  19. Corvino, J.: Scalar curvature deformations and a gluing construction for the Einstein constraint equations. Commun. Math. Phys. 214, 137–189 (2000)

    Article  MathSciNet  Google Scholar 

  20. Chow, B., et al.: The Ricci Flow: Techniques and Applications. Part I. Geometric aspects. Mathematical Surveys and Monographs. American Mathematical Society, Providence (2007)

    Book  Google Scholar 

  21. Gibbons, G., Hartnoll, S., Pope, C.: Bohm and Einstein–Sasaki metrics, black holes and cosmological event horizonts. Phys. Rev. D. 67, 84024 (2003)

    Article  MathSciNet  Google Scholar 

  22. Hijazi, O., Montiel, S., Raulot, S.: Uniqueness of de Sitter spacetime among static vacua with positive cosmological constant. Ann. Glob. Anal. Geom. 47(2), 167–178 (2015)

    Article  MathSciNet  Google Scholar 

  23. Hwang, S.: Critical points of the total scalar curvature functional on the space of metrics of constant scalar curvature. Manuscr. Math. 103, 135–142 (2000)

    Article  MathSciNet  Google Scholar 

  24. Hwang, S.: The critical point equation on a three-dimensional compact manifold. Proc. Am. Math. Soc. 131, 3221–3230 (2003)

    Article  MathSciNet  Google Scholar 

  25. Hwang, S.: Three dimensional critical point of the total scalar curvature. Bull. Korean Math. Soc. 50(3), 867–871 (2013)

    Article  MathSciNet  Google Scholar 

  26. Kim, J., Shin, J.: Four-dimensional static and related critical spaces with harmonic curvature. Pac. J. Math. 295(2), 429–462 (2018)

    Article  MathSciNet  Google Scholar 

  27. Kobayashi, O.: A differential equation arising from scalar curvature function. J. Math. Soc. Jpn. 34, 665–675 (1982)

    Article  MathSciNet  Google Scholar 

  28. Lafontaine, J.: Sur la géométrie d’une généralisation de l’équation différentielle d’Obata. J. Math. Pures Appl. 62, 63–72 (1983)

    MathSciNet  MATH  Google Scholar 

  29. Leandro, B.: A note on critical point metrics of the total scalar curvature functional. J. Math. Anal Appl. 424, 1544–1548 (2015)

    Article  MathSciNet  Google Scholar 

  30. Kobayashi, O., Obata, M.: Conformally-flatness and static space-time, Manifolds and Lie Groups. Progress in Mathematics, vol. 14, pp. 197–206. Birkhäuser, Boston (1980)

    Google Scholar 

  31. Miao, P., Tam, L.F.: On the volume functional of compact manifolds with boundary with constant scalar curvature. Calc. Var. PDE 36, 141–171 (2009)

    Article  MathSciNet  Google Scholar 

  32. Miao, P., Tam, L.F.: Einstein and conformally flat critical metrics of the volume functional. Trans. Am. Math. Soc. 363, 2907–2937 (2011)

    Article  MathSciNet  Google Scholar 

  33. Morrey, C.B.: Multiple integrals in the calculus of variations. Springer, Berlin. Séminaire de Théorie Spectrale et Géométrie (1966)

  34. Müller zum Hagen, H.: On the analyticity of static vacuum solutions of Einstein’s equations. Proc. Camb. Philos. Soc. 67, 415–421 (1970)

    Article  MathSciNet  Google Scholar 

  35. Obata, M.: Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Jpn. 14, 333–340 (1962)

    Article  MathSciNet  Google Scholar 

  36. Qing, J., Yuan, W.: A note on static spaces and related problems. J. Geom. Phys. 74, 18–27 (2013)

    Article  MathSciNet  Google Scholar 

  37. Santos, A.: Critical metrics of the scalar curvature functional satisfying a vanishing condiction on the Weyl tensor. Arch. Math. 109, 91–100 (2017)

    Article  Google Scholar 

  38. Viaclovsky, J.: Topics in Riemannian Geometry. Notes of Curse Math 865, Fall 2011. Available at http://www.math.uci.edu/~jviaclov/courses/865_Fall_2011.pdf (2019). Accessed 16 Dec 2019

  39. Yun, G., Hwang, S.: Gap theorems on critical point equation of the total scalar curvature with divergence-free Bach tensor. Taiwan. J. Math. 23(4), 841–855 (2019)

    Article  MathSciNet  Google Scholar 

  40. Yun, G., Chang, J., Hwang, S.: Total scalar curvature and harmonic curvature. Taiwan. J. Math. 18(5), 1439–1458 (2014)

    Article  MathSciNet  Google Scholar 

  41. Yun, G., Chang, J., Hwang, S.: Erratum to: total scalar curvature and harmonic curvature. Taiwan. J. Math. 20(3), 699–703 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Baltazar.

Additional information

Communicated by Andreas Cap.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was partially supported by PPP/FAPEPI/MCT/CNPq, Brazil, Grant 007/2018. The second author was partially supported by CNPq, Brazil, Grant 307514/2017-0. The third author was partially supported by CNPq, Brazil, Grant 310881/2017-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baltazar, H., Barros, A., Batista, R. et al. On static manifolds and related critical spaces with zero radial Weyl curvature. Monatsh Math 191, 449–463 (2020). https://doi.org/10.1007/s00605-019-01365-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-019-01365-8

Keywords

Mathematics Subject Classification

Navigation