Skip to main content
Log in

The Green–Tao theorem for primes of the form \(x^2+y^2+1\)

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We prove that the primes of the form \(x^2+y^2+1\) contain arbitrarily long non-trivial arithmetic progressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Conlon, D., Fox, J., Zhao, Y.: A relative Szemerdi theorem. Geom. Funct. Anal. 25, 733–762 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Goldston, D.A., Yıldırım, C.Y.: Higher correlations of divisor sums related to primes, I: triple correlations. Integers 3, 66pp (2003)

    MathSciNet  MATH  Google Scholar 

  3. Goldston, D.A., Pintz, J., Yıldırım, C.Y.: Primes in tuples. I. Ann. Math. 170(2), 819–862 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Green, B.: Roth’s theorem in the primes. Ann. Math. 161(2), 1609–1636 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Green, B., Tao, T.: The primes contain arbitrarily long arithmetic progressions. Ann. Math. 167(2), 481–547 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Green, B., Tao, T.: Linear equations in primes. Ann. Math. 171(2), 1753–1850 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Iwaniec, H.: Primes of the type \(\phi (x, y)+A\) where \(\phi \) is a quadratic form. Acta Arith. 21, 203–234 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lê, T.-H.: Green-Tao theorem in function fields. Acta Arith. 147, 129–152 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lê, T.-H., Wolf, J.: Polynomial configurations in the primes, Int. Math. Res. Not. IMRN 2014, 6448–6473

  10. Linnik, J.V.: An asymptotic formula in an additive problem of Hardy–Littlewood. Izv. Akad. Nauk SSSR Ser. Mat. bf 24, 629706 (1960)

    MathSciNet  Google Scholar 

  11. Matomäki, K.: Prime numbers of the form \(p=m^2+n^2+1\) in short intervals. Acta Arith. 128, 193–200 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Matomäki, K.: The binary Goldbach problem with one prime of the form \(p=k^2+l^2+1\). J. Number Theory 128, 1195–1210 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Motohashi, Y., On the distribution of prime numbers which are of the form \(x^2+y^2+1\), Acta Arith. 16 (1969/1970), 351–363

  14. Pintz, J.: Polignac Numbers, Conjectures of Erdős on Gaps Between Primes, Arithmetic Progressions in Primes, and the Bounded Gap Conjecture, From Arithmetic to Zeta-functions, pp. 367–384. Springer, Berlin (2016)

    MATH  Google Scholar 

  15. Stein, E.M., Shakarchi, R.: Fourier Analysis. An introduction. Princeton Lectures in Analysis 1. Princeton University Press, Princeton, NJ (2003)

    MATH  Google Scholar 

  16. Tao, T.: The Gaussian primes contain arbitrarily shaped constellations. J. Anal. Math. 99, 109–176 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tao, T.: A remark on Goldston–Yildirim correlation estimates, preprint, available on: http://www.math.ucla.edu/~tao/preprints/Expository/gy-corr.dvi

  18. Tao, T., Ziegler, T.: The primes contain arbitrarily long polynomial progressions. Acta Math. 201, 213–305 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tao, T., Ziegler, T.: A multi-dimensional Szemerédi theorem for the primes via a correspondence principle. Israel J. Math. 207, 203–228 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Teräväinen, J., The Goldbach problem for primes that are sums of two squares plus one, Mathematika, 64(1), 20–70. https://doi.org/10.1112/S0025579317000341 (to appear)

  21. Wu, J.: Primes of the form \(p=1+m^2+n^2\) in short intervals. Proc. Am. Math. Soc. 126, 1–8 (1998)

    Article  MATH  Google Scholar 

  22. Zhou, B.-B.: The Chen primes contain arbitrarily long arithmetic progressions. Acta Arith. 138, 301–315 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous referee for his/her very helpful comments. We also thank Professor Henryk Iwaniec for his helpful explanation on Theorem 1 of [7]. The work is supported by National Natural Science Foundation of China (Grant No. 11671197). The second author is the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Pan.

Additional information

Communicated by J. Schoißengeier.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work is supported by the National Natural Science Foundation of China (Grant No. 11671197).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, YC., Pan, H. The Green–Tao theorem for primes of the form \(x^2+y^2+1\). Monatsh Math 189, 715–733 (2019). https://doi.org/10.1007/s00605-018-1245-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-018-1245-0

Keywords

Mathematics Subject Classification

Navigation