Skip to main content
Log in

On the construction of the natural extension of the Hurwitz complex continued fraction map

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We consider the Hurwitz complex continued fraction map associated to the Gaussian field \({\mathbb {Q}}(i)\). We characterize the density function of the absolutely continuous invariant measure for the map associated to the Hurwitz continued fractions. For this reason, we construct a representation of its natural extension map (in the sense of an ergodic measure preserving map) on a subset of \({\mathbb {C}} \times {\mathbb {C}}\). This subset is constructed by the closure of pairs of the n-th iteration of a complex number by the Hurwitz complex continued fraction map and \(-\frac{Q_{n}}{Q_{n-1}}\), where \(Q_{n}\) is the denominator of the n-th convergent of the Hurwitz continued fractions. The absolutely continuous invariant measure for the natural extension map is induced from the invariant measure for Möbius transformations on the set of geodesics over three dimension upper-half space. Then the absolutely continues invariant measure for the Hurwitz continued fraction map is given by its marginal measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ahlfors, L.V.: Mobius Transformations in Several Dimensions. Ordway Professorship Lectures in Mathematics. School of Mathematics, University of Minnesota, Minneapolis, MN (1981)

    Google Scholar 

  2. Bandt, C., Wang, Y.: Disk-like self-affine tiles in \({\mathbb{R}}^{2}\). Discrete Comput. Geom. 26(4), 591–601 (2001)

    Article  MathSciNet  Google Scholar 

  3. Dani, S.G., Nogueira, A.: Continued fractions for complex numbers and values of binary quadratic forms. Trans. Am. Math. Soc. 366(7), 3553–3583 (2014)

    Article  MathSciNet  Google Scholar 

  4. Hensley, D.: Continued Fractions. World Scientific Publishing Co. Pte. Ltd, Hackensack, NJ (2006)

    Book  Google Scholar 

  5. Hurwitz, A.: Über die Entwicklung complexer Grössen in Kettenbrüche. Acta Math. 11(1–4), 187–200 (1887)

    Article  MathSciNet  Google Scholar 

  6. Hurwitz, J.: Über die Reduction der binären quadratischen Formen mit complexen Coefficienten und Variabeln. Acta Math. 25, 231–290 (1902)

    Article  MathSciNet  Google Scholar 

  7. Ito, S.: Ergodic theory and Diophantine approximations: on natural extensions of algorithms. Sugaku 39(2), 140–158 (1987). (Japanese)

    MathSciNet  MATH  Google Scholar 

  8. Lakein, R.B.: Approximation properties of some complex continued fractions. Monatsh. Math. 77, 396–403 (1973)

    Article  MathSciNet  Google Scholar 

  9. Lakein, R.B.: A continued fraction proof of Ford’s theorem on complex rational approximations. J. Reine Angew. Math. 272, 1–13 (1974)

    MathSciNet  MATH  Google Scholar 

  10. Lakein, R.B.: Continued fractions and equivalent complex numbers. Proc. Am. Math. Soc. 42, 641–642 (1974)

    MathSciNet  MATH  Google Scholar 

  11. Nakada, H.: On the Kuzmin’s theorem for Hurwitz complex continued fractions. Keio Eng. Rep. 29, 93–108 (1976)

    MATH  Google Scholar 

  12. Nakada, H.: On metric Diophantine approximation of complex numbers, complex continued fractions. Seminaire de Theorie des Nombres, 1987–1988 (Talence, 1987–1988), Exp. No. 45, University of Bordeaux I, Talence (1988)

  13. Nakada, H.: On ergodic theory of A. Schmidt’s complex continued fractions over Gaussian field. Monatsh. Math. 105(2), 131–150 (1988)

    Article  MathSciNet  Google Scholar 

  14. Nakada, H.: Continued fractions, geodesic flows and Ford circles. Algorithms, Fractals, and Dynamics (Okayama, Kyoto, pp. 179–191, 1995. Plenum, New York (1992)

  15. Nakada, H.: On the Lenstra constant associated to the Rosen continued fractions. J. Eur. Math. Soc. 12(1), 55–70 (2010)

    Article  MathSciNet  Google Scholar 

  16. Nakada, H., Natsui, R.: On the metrical theory of continued fraction mixing fibred systems and its application to Jacobi–Perron algorithm. Monatsh. Math. 138(4), 267–288 (2003)

    Article  MathSciNet  Google Scholar 

  17. Rohlin, V.A.: Exact endomorphisms of a Lebesgue space. Izv. Akad. Nauk SSSR Ser. Mat. 25, 499–530 (1961). (Russian)

    MathSciNet  Google Scholar 

  18. Schmidt, A.: Diophantine approximation of complex numbers. Acta Math. 134, 1–85 (1975)

    Article  MathSciNet  Google Scholar 

  19. Schmidt, A.: Ergodic theory of complex continued fractions. Monatsh. Math. 93, 39–62 (1982)

    Article  MathSciNet  Google Scholar 

  20. Schweiger, F.: Kuzmin’s theorem revisited. Ergodic Theory Dyn. Syst. 20(2), 557–565 (2000)

    Article  MathSciNet  Google Scholar 

  21. Schweiger, F.: A new proof of Kuzmin’s theorem. Rev. Roum. Math. Pures Appl. 56(3), 229–234 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Tanaka, S.: A complex continued frcation transformation and its ergodic properties. Tokyo J. Math. 8(1), 191–214 (1985)

    Article  MathSciNet  Google Scholar 

  23. Waterman, M.: Some ergodic properties of multi-dimensional f-expansions. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 16, 77–103 (1970)

    Article  MathSciNet  Google Scholar 

  24. Yuri, M.: Multi-dimensional maps with infinite invariant measures and countable state sofic shifts. Indag. Math. N.S. 6, 355–383 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank referees for their helpful comments. They also would like to thank Masahiro Mizutani, who carried out the computer simulation of \(\{ \frac{Q_{n-1}}{Q_{n}}\}\) (Fig. 10) based on the second author’s idea in the early ’80th. The first author was partially supported by JSPS Grants No. 23540141. The third author was partially supported by JSPS Grants No. 16K13766 and JSPS Core-to-core program, “Foundation of a Global Research Cooperative Center in Mathematics focused on Number Theory and Geometry”. The fourth author was partially supported by JSPS Grants No. 15K17559.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Nakada.

Additional information

Communicated by H. Bruin.

Appendices

Appendix A

We define

$$\begin{aligned} \Lambda _{1} = \{ n - m i \, | \, n \ge 1, \, m \ge 1 \} {\setminus } \left( \Lambda _{2} \cup \{ 1 - i \} \right) \end{aligned}$$

and

$$\begin{aligned} \Lambda _{2} = \{ 1-2i, \, 2 - 2i, \, 2 - i \} . \end{aligned}$$

Then the partition \(\{ V_{\cdot , \cdot } \}\) can be decomposed by the fundamental partition of U as follows:

$$\begin{aligned} V_{1,1}= & {} \bigcup \nolimits _{a \in {{\mathbb {Z}}}, a \ge 2} \langle a \rangle \\ V_{2, 1}= & {} \bigcup \nolimits _{a \in \Lambda _1} \langle a \rangle \quad \cup \quad \bigcup \nolimits _{a \in \Lambda _2} \left( \langle a \rangle \cap V_{2,1} \right) \\ V_{3, 1}= & {} \bigcup \nolimits _{a \in \Lambda _2} \left( \langle a \rangle \cap V_{3,1} \right) \cup \langle 1-i \rangle \\ V_{1,2}= & {} \bigcup \nolimits _{a \in {{\mathbb {Z}}}, a \ge 2} \langle -ai \rangle \\ V_{2, 2}= & {} \bigcup \nolimits _{a \in \Lambda _1} \langle -ai \rangle \quad \cup \quad \bigcup \nolimits _{a \in \Lambda _2} \left( \langle -ai \rangle \cap V_{2,2} \right) \\ V_{3, 2}= & {} \bigcup \nolimits _{a \in \Lambda _2} \left( \langle -ai \rangle \cap V_{3,2} \right) \cup \langle -1-i \rangle \\ V_{1,3}= & {} \bigcup \nolimits _{a \in {{\mathbb {Z}}}, a \ge 2} \langle -a \rangle \\ V_{2, 3}= & {} \bigcup \nolimits _{a \in \Lambda _1} \langle -a \rangle \quad \cup \quad \bigcup \nolimits _{a \in \Lambda _2} \left( \langle -a \rangle \cap V_{2,3} \right) \\ V_{3, 3}= & {} \bigcup \nolimits _{a \in \Lambda _2} \left( \langle -a \rangle \cap V_{3,3} \right) \cup \langle -1+i \rangle \\ V_{1,4}= & {} \bigcup \nolimits _{a \in {{\mathbb {Z}}}, a \ge 2} \langle ai \rangle \\ V_{2, 4}= & {} \bigcup \nolimits _{a \in \Lambda _1} \langle ai \rangle \quad \cup \quad \bigcup \nolimits _{a \in \Lambda _2} \left( \langle ai \rangle \cap V_{2,4} \right) \\ V_{3, 4}= & {} \bigcup \nolimits _{a \in \Lambda _2} \left( \langle ai \rangle \cap V_{3,4} \right) \cup \langle 1+i \rangle \end{aligned}$$

Next we decompose \(\{ U_{\cdot , \cdot } \}\) by \(V_{\cdot , \cdot }\):

$$\begin{aligned} U_{1,1}= & {} V_{1,1} \cup V_{1,2} \cup V_{1,4} \cup V_{2,1} \cup V_{2,4} \cup V_{3,1} \cup V_{3,4} \\ U_{1,2}= & {} V_{1,1} \cup V_{1,2} \cup V_{1,3} \cup V_{2,1} \cup V_{2,2} \cup V_{3,1} \cup V_{3,2} \\ U_{1,3}= & {} V_{1,2} \cup V_{1,3} \cup V_{1,4} \cup V_{2,2} \cup V_{2,3} \cup V_{3,2} \cup V_{3,3} \\ U_{1,4}= & {} V_{1,1} \cup V_{1,3} \cup V_{1,4} \cup V_{2,3} \cup V_{2,4} \cup V_{3,3} \cup V_{3,4} \\ U_{2,1}= & {} V_{1,1} \cup V_{1,2} \cup V_{2,1} \cup V_{3,1} \\ U_{2,2}= & {} V_{1,2} \cup V_{1,3} \cup V_{2,2} \cup V_{3,2} \\ U_{2,3}= & {} V_{1,3} \cup V_{1,4} \cup V_{2,3} \cup V_{3,3} \\ U_{2,4}= & {} V_{1,1} \cup V_{1,4} \cup V_{2,4} \cup V_{3,4} \\ U_{3,1}= & {} U{\setminus }V_{3,3} \\ U_{3,2}= & {} U{\setminus }V_{3,4} \\ U_{3,3}= & {} U{\setminus }V_{3,1} \\ U_{3,4}= & {} U{\setminus }V_{3,2} \end{aligned}$$

Finally we write the image of \(V_{\cdot , \cdot } \times V_{\cdot , \cdot }^{*}\) by \({\hat{T}}\).

$$\begin{aligned} {\hat{T}} \left( V_{1,1} \times V_{1,1}^{*} \right)= & {} {\mathop {\bigcup }\nolimits _{a \in {{\mathbb {Z}}}, \, a \ge 3}}\left( U \times (X_{1,1}- a)\right) \\&\cup \left( V_{1,1} \times (X_{1,1} - 2) \right) \cup \left( V_{1,2} \times (X_{1,1} - 2) \right) \\&\cup \left( V_{1,4} \times (X_{1,1} - 2) \right) \cup \left( V_{2,1} \times (X_{1,1} - 2) \right) \cup \left( V_{2,4} \times (X_{1,1} - 2) \right) \\ {}{} & {} \cup \left( V_{3,1} \times (X_{1,1} - 2) \right) \cup \left( V_{3,4} \times (X_{1,1} - 2) \right) \\ {\hat{T}} \left( V_{2,1} \times V_{2,1}^{*} \right)= & {} {\mathop {\bigcup }\nolimits _{a \in \Lambda _{1}}}\left( U \times (X_{2,1}- a)\right) \, \cup \left( V_{1,1} \times (X_{2,1} -(1- 2i)) \right) \\&\cup \left( V_{1,3} \times (X_{2,1} -(1- 2i)) \right) \cup \left( V_{1,4} \times (X_{2,1} -(1- 2i)) \right) \\&\cup \left( V_{2,3} \times (X_{2,1} -(1- 2i)) \right) \cup \left( V_{2,4} \times (X_{2,1} -(1- 2i)) \right) \\&\cup \left( V_{3,3} \times (X_{2,1} -(1- 2i)) \right) \cup \left( V_{3,4} \times (X_{2,1} -(1- 2i)) \right) \\&\cup \left( V_{1,1} \times (X_{2,1} -(2- 2i)) \right) \cup \left( V_{1,2} \times (X_{2,1} -(2- 2i)) \right) \\&\cup \left( V_{1,3} \times (X_{2,1} -(2- 2i)) \right) \cup \left( V_{1,4} \times (X_{2,1} -(2- 2i)) \right) \\&\cup \left( V_{2,1} \times (X_{2,1} -(2- 2i)) \right) \cup \left( V_{2,2} \times (X_{2,1} -(2- 2i)) \right) \\&\cup \left( V_{2,3} \times (X_{2,1} -(2- 2i)) \right) \cup \left( V_{2,4} \times (X_{2,1} -(2- 2i)) \right) \\&\cup \left( V_{3,1} \times (X_{2,1} -(2- 2i)) \right) \cup \left( V_{3,3} \times (X_{2,1} -(2- 2i)) \right) \\&\cup \left( V_{3,4} \times (X_{2,1} -(2- 2i)) \right) \cup \left( V_{1,1} \times (X_{2,1} -(2- i)) \right) \\&\cup \left( V_{1,2} \times (X_{2,1} -(2- i)) \right) \cup \left( V_{1,4} \times (X_{2,1} -(2- i)) \right) \\&\cup \left( V_{2,1} \times (X_{2,1} -(2- i)) \right) \cup \left( V_{2,4} \times (X_{2,1} -(2- i)) \right) \\&\cup \left( V_{3,1} \times (X_{2,1} -(2- i)) \right) \cup \left( V_{3,4} \times (X_{2,1} -(2- i)) \right) \\ \end{aligned}$$
$$\begin{aligned} {\hat{T}} \left( V_{3,1} \times V_{3,1}^{*} \right)= & {} \left( V_{1,2} \times (X_{3,1} -(1- 2i)) \right) \cup \left( V_{2,1} \times (X_{3,1} -(1- 2i)) \right) \\&\cup \left( V_{2,2} \times (X_{3,1} -(1- 2i)) \right) \cup \left( V_{3,1} \times (X_{3,1} -(1- 2i)) \right) \\&\cup \left( V_{3,2} \times (X_{3,1} -(2- 2i)) \right) \cup \left( V_{1,3} \times (X_{3,1} -(2- i)) \right) \\&\cup \left( V_{2,2} \times (X_{3,1} -(2- i)) \right) \cup \left( V_{2,3} \times (X_{3,1} -(2- i)) \right) \\&\cup \left( V_{3,3} \times (X_{3,1} -(2- i)) \right) \cup \left( V_{1,1} \times (X_{3,1} -(1- i)) \right) \\&\cup \left( V_{1,4} \times (X_{3,1} -(1- i)) \right) \cup \left( V_{2,4} \times (X_{3,1} -(1- i)) \right) \\&\cup \left( V_{3,4} \times (X_{3,1} -(1- i)) \right) \\ {\hat{T}} \left( V_{1,2} \times V_{1,2}^{*} \right)= & {} {\mathop {\bigcup }\nolimits _{a \in {{\mathbb {Z}}}, \, a \ge 3}}\left( U \times (X_{1,2}+ ai)\right) \\&\cup \left( V_{1,1} \times (X_{1,2} + 2i) \right) \cup \left( V_{1,3} \times (X_{1,2} + 2i) \right) \\&\cup \left( V_{1,4} \times (X_{1,2} + 2i) \right) \cup \left( V_{2,3} \times (X_{1,2} + 2i) \right) \\&\cup \left( V_{2,4} \times (X_{1,2} + 2i) \right) \\ {}{} & {} \cup \left( V_{3,3} \times (X_{1,2} + 2i) \right) \cup \left( V_{3,4} \times (X_{1,2} + 2i) \right) \\ \end{aligned}$$
$$\begin{aligned} {\hat{T}} \left( V_{2,2} \times V_{2,2}^{*} \right)= & {} {\mathop {\bigcup }\nolimits _{a \in \Lambda _{1}}}\left( U \times (X_{2,2} + ai)\right) \, \cup \left( V_{1,2} \times (X_{2,2} -(-2- i)) \right) \\&\cup \left( V_{1,3} \times (X_{2,2} -(-2 - i)) \right) \cup \left( V_{1,4} \times (X_{2,2} -(-2 - i)) \right) \\&\cup \left( V_{2,2} \times (X_{2,2} -(-2 - i)) \right) \cup \left( V_{2,3} \times (X_{2,2} -(-2 - i)) \right) \\&\cup \left( V_{3,2} \times (X_{2,2} -(-2 - i)) \right) \cup \left( V_{3,3} \times (X_{2,2} -(-2 - i)) \right) \\&\cup \left( V_{1,1} \times (X_{2,2} -(-2- 2i)) \right) \cup \left( V_{1,2} \times (X_{2,2} -(-2- 2i)) \right) \\&\cup \left( V_{1,3} \times (X_{2,2} -(-2- 2i)) \right) \cup \left( V_{1,4} \times (X_{2,2} -(-2- 2i)) \right) \\&\cup \left( V_{2,1} \times (X_{2,2} -(-2- 2i)) \right) \cup \left( V_{2,2} \times (X_{2,2} -(-2- 2i)) \right) \\&\cup \left( V_{2,3} \times (X_{2,2} -(-2- 2i)) \right) \cup \left( V_{2,4} \times (X_{2,2} -(-2- 2i)) \right) \\&\cup \left( V_{3,2} \times (X_{2,2} -(-2- 2i)) \right) \cup \left( V_{3,3} \times (X_{2,2} -(-2- 2i)) \right) \\&\cup \left( V_{3,4} \times (X_{2,2} -(-2- 2i)) \right) \cup \left( V_{1,1} \times (X_{2,2} -(-1 - 2i)) \right) \\&\cup \left( V_{1,3} \times (X_{2,2} -(-1 - 2i)) \right) \cup \left( V_{1,4} \times (X_{2,2} -(-1 - 2i)) \right) \\&\cup \left( V_{2,3} \times (X_{2,2} -(-1 - 2i)) \right) \cup \left( V_{2,4} \times (X_{2,2} -(-1 - 2i)) \right) \\&\cup \left( V_{3,3} \times (X_{2,2} -(-1 - 2i)) \right) \cup \left( V_{3,4} \times (X_{2,2} -(-1 - 2i)) \right) \\ \end{aligned}$$
$$\begin{aligned} {\hat{T}} \left( V_{3,2} \times V_{3,2}^{*} \right)= & {} \left( V_{1,1} \times (X_{3,2} -(-2- i)) \right) \cup \left( V_{2,1} \times (X_{3,2} -(-2- i)) \right) \\&\cup \left( V_{2,4} \times (X_{3,2} -(-2- i)) \right) \cup \left( V_{3,4} \times (X_{3,2} -(-2- i)) \right) \\&\cup \left( V_{3,1} \times (X_{3,2} -(-2- 2i)) \right) \cup \left( V_{1,2} \times (X_{3,2} -(-1- 2i)) \right) \\&\cup \left( V_{2,1} \times (X_{3,2} -(-1- 2i)) \right) \cup \left( V_{2,2} \times (X_{3,2} -(-1- 2i)) \right) \\&\cup \left( V_{3,2} \times (X_{3,2} -(-1- 2i)) \right) \cup \left( V_{1,3} \times (X_{3,2} -(-1- i)) \right) \\&\cup \left( V_{1,4} \times (X_{3,2} -(-1- i)) \right) \cup \left( V_{2,3} \times (X_{3,2} -(-1- i)) \right) \\&\cup \left( V_{3,3} \times (X_{3,2} -(-1- i)) \right) \\ {\hat{T}} \left( V_{1,3} \times V_{1,3}^{*} \right)= & {} {\mathop {\bigcup }\nolimits _{a \in {{\mathbb {Z}}}, \, a \ge 3}}\left( U \times (X_{1,3}+ a)\right) \, \cup \left( V_{1,2} \times (X_{1,3} + 2) \right) \\&\cup \left( V_{1,3} \times (X_{1,3} + 2) \right) \cup \left( V_{1,4} \times (X_{1,3} + 2) \right) \cup \left( V_{2,2} \times (X_{1,3} + 2) \right) \\&\cup \left( V_{2,3} \times (X_{1,3} + 2) \right) \cup \left( V_{3,2} \times (X_{1,3} + 2) \right) \cup \left( V_{3,3} \times (X_{1,3} + 2) \right) \\ \end{aligned}$$
$$\begin{aligned} {\hat{T}} \left( V_{2,3} \times V_{2,3}^{*} \right)= & {} {\mathop {\bigcup }\nolimits _{a \in \Lambda _{1}}}\left( U \times (X_{2,3}-(-a))\right) \, \cup \left( V_{1,1} \times (X_{2,3} -(-1 + 2i)) \right) \\&\cup \left( V_{1,2} \times (X_{2,3} -(-1 + 2i)) \right) \cup \left( V_{1,3} \times (X_{2,3} - (-1 + 2i)) \right) \\&\cup \left( V_{2,1} \times (X_{2,3} - (-1 + 2i)) \right) \cup \left( V_{2,2} \times (X_{2,3} - (-1 + 2i)) \right) \\&\cup \left( V_{3,1} \times (X_{2,3} - (-1 + 2i)) \right) \cup \left( V_{3,2} \times (X_{2,3} - (-1 + 2i)) \right) \\&\cup \left( V_{1,1} \times (X_{2,3} - (-2 + 2i)) \right) \cup \left( V_{1,2} \times (X_{2,3} - (-2 + 2i)) \right) \\&\cup \left( V_{1,3} \times (X_{2,3} - (-2 + 2i)) \right) \cup \left( V_{1,4} \times (X_{2,3} - (-2 + 2i)) \right) \\&\cup \left( V_{2,1} \times (X_{2,3} - (-2 + 2i)) \right) \cup \left( V_{2,2} \times (X_{2,3} - (-2 + 2i)) \right) \\&\cup \left( V_{2,3} \times (X_{2,3} - (-2 + 2i)) \right) \cup \left( V_{2,4} \times (X_{2,3} - (-2 + 2i)) \right) \\&\cup \left( V_{3,1} \times (X_{2,3} - (-2 + 2i)) \right) \cup \left( V_{3,2} \times (X_{2,3} - (-2 + 2i)) \right) \\&\cup \left( V_{3,3} \times (X_{2,3} - (-2 + 2i)) \right) \cup \left( V_{1,2} \times (X_{2,3} - (-2 + i)) \right) \\&\cup \left( V_{1,3} \times (X_{2,3} - (-2 + i)) \right) \cup \left( V_{1,4} \times (X_{2,3} -(-2 + i)) \right) \\&\cup \left( V_{2,2} \times (X_{2,3} - (-2 + i)) \right) \cup \left( V_{2,3} \times (X_{2,3} - (-2 + i)) \right) \\&\cup \left( V_{3,2} \times (X_{2,3} - (-2 + i)) \right) \cup \left( V_{3,3} \times (X_{2,3} - (-2 + i)) \right) \end{aligned}$$
$$\begin{aligned} {\hat{T}} \left( V_{3,3} \times V_{3,3}^{*} \right)= & {} \left( V_{1,4} \times (X_{3,3} -(-1+ 2i)) \right) \cup \left( V_{2,3} \times (X_{3,3} -(-1+ 2i)) \right) \\&\cup \left( V_{2,4} \times (X_{3,3} -(-1+ 2i)) \right) \cup \left( V_{3,3} \times (X_{3,3} -(-1+ 2i)) \right) \\&\cup \left( V_{3,4} \times (X_{3,3} -(-2+ 2i)) \right) \cup \left( V_{1,1} \times (X_{3,3} -(-2 + i)) \right) \\&\cup \left( V_{2,1} \times (X_{3,3} -(-2+ i)) \right) \cup \left( V_{2,4} \times (X_{3,3} -(-2+ i)) \right) \\&\cup \left( V_{3,1} \times (X_{3,3} -(-2 + i)) \right) \cup \left( V_{1,2} \times (X_{3,3} -(-1+ i)) \right) \\&\cup \left( V_{1,3} \times (X_{3,3} -(-1+ i)) \right) \cup \left( V_{2,2} \times (X_{3,3} -(-1+ i)) \right) \\&\cup \left( V_{3,2} \times (X_{3,3} -(-1+ i)) \right) \\ {\hat{T}} \left( V_{1,4} \times V_{1,4}^{*} \right)= & {} {\mathop {\bigcup }\nolimits _{a \in {{\mathbb {Z}}}, \, a \ge 3}}\left( U \times (X_{1,4} - ai)\right) \, \cup \left( V_{1,1} \times (X_{1,4} - 2i) \right) \\&\cup \left( V_{1,2} \times (X_{1,4} - 2i) \right) \\&\cup \left( V_{1,3} \times (X_{1,4} - 2i) \right) \cup \left( V_{2,1} \times (X_{1,4} - 2i) \right) \cup \left( V_{2,2} \times (X_{1,4} - 2i) \right) \\ {}{} & {} \cup \left( V_{3,1} \times (X_{1,4} - 2i) \right) \cup \left( V_{3,2} \times (X_{1,4} - 2i) \right) \\ \end{aligned}$$
$$\begin{aligned} {\hat{T}} \left( V_{2,4} \times V_{2,4}^{*} \right)= & {} {\mathop {\bigcup }\nolimits _{a \in \Lambda _{1}}}\left( U \times (X_{2,4} - ai)\right) \, \cup \left( V_{1,1} \times (X_{2,4} -(2 + i)) \right) \\&\cup \left( V_{1,2} \times (X_{2,4} -(2 + i)) \right) \cup \left( V_{1,4} \times (X_{2,4} -(2 + i)) \right) \\&\cup \left( V_{2,1} \times (X_{2,4} -(2 + i)) \right) \cup \left( V_{2,4} \times (X_{2,4} -(2 + i)) \right) \\&\cup \left( V_{3,1} \times (X_{2,4} -(2 + i)) \right) \cup \left( V_{3,4} \times (X_{2,4} -(2 + i)) \right) \\&\cup \left( V_{1,1} \times (X_{2,4} -(2 + 2i)) \right) \cup \left( V_{1,2} \times (X_{2,4} -(2 + 2i)) \right) \\&\cup \left( V_{1,3} \times (X_{2,4} -(2 + 2i)) \right) \cup \left( V_{1,4} \times (X_{2,4} -(2 + 2i)) \right) \\&\cup \left( V_{2,1} \times (X_{2,4} -(2 + 2i)) \right) \cup \left( V_{2,2} \times (X_{2,4} -(2 + 2i)) \right) \\&\cup \left( V_{2,3} \times (X_{2,4} -(2 + 2i)) \right) \cup \left( V_{2,4} \times (X_{2,4} -(2 + 2i)) \right) \\&\cup \left( V_{3,1} \times (X_{2,4} -(2 + 2i)) \right) \cup \left( V_{3,2} \times (X_{2,4} -(2 + 2i)) \right) \\&\cup \left( V_{3,4} \times (X_{2,4} -(2 + 2i)) \right) \cup \left( V_{1,1} \times (X_{2,4} -(1 + 2i)) \right) \\&\cup \left( V_{1,2} \times (X_{2,4} -(1 + 2i)) \right) \cup \left( V_{1,3} \times (X_{2,4} -(1 + 2i)) \right) \\&\cup \left( V_{2,1} \times (X_{2,4} -(1 + 2i)) \right) \cup \left( V_{2,2} \times (X_{2,4} - (1 + 2i)) \right) \\&\cup \left( V_{3,1} \times (X_{2,4} - (1 + 2i)) \right) \cup \left( V_{3,2} \times (X_{2,4} - (1 + 2i)) \right) \\ \end{aligned}$$
$$\begin{aligned} {\hat{T}} \left( V_{3,4} \times V_{3,4}^{*} \right)= & {} \left( V_{1,3} \times (X_{3,4} -(2+ i)) \right) \cup \left( V_{2,2} \times (X_{3,4} -(2 + i)) \right) \\&\cup \left( V_{2,3} \times (X_{3,4} -(2+ i)) \right) \cup \left( V_{3,2} \times (X_{3,4} -(2+ i)) \right) \\&\cup \left( V_{3,3} \times (X_{3,4} -(2+ 2i)) \right) \cup \left( V_{1,4} \times (X_{3,4} -(1+ 2i)) \right) \\&\cup \left( V_{2,3} \times (X_{3,4} -(1+ 2i)) \right) \cup \left( V_{2,4} \times (X_{3,4} -(1+ 2i)) \right) \\&\cup \left( V_{3,4} \times (X_{3,4} -(1 + 2i)) \right) \cup \left( V_{1,1} \times (X_{3,4} -(1+ i)) \right) \\&\cup \left( V_{1,2} \times (X_{3,4} -(1+ i)) \right) \cup \left( V_{2,1} \times (X_{3,4} -(1+ i)) \right) \\&\cup \left( V_{3,1} \times (X_{3,4} -(1+ i)) \right) \end{aligned}$$

Appendix B

See Figs. 13, 14 and 15.

Fig. 13
figure 13

\(X_{1,\ell }\) and \(V^*_{1,\ell }\) for \(\ell =1,2,3,4\)

Fig. 14
figure 14

\(X_{2,\ell }\) and \(V^*_{2,\ell }\) for \(\ell =1,2,3,4\)

Fig. 15
figure 15

\(X_{3,\ell }\) and \(V^*_{3,\ell }\) for \(\ell =1,2,3,4\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ei, H., Ito, S., Nakada, H. et al. On the construction of the natural extension of the Hurwitz complex continued fraction map. Monatsh Math 188, 37–86 (2019). https://doi.org/10.1007/s00605-018-1229-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-018-1229-0

Keywords

Mathematics Subject Classification

Navigation