Skip to main content
Log in

Strongly nonlinear elliptic boundary value problems in Musielak–Orlicz spaces

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In this paper we prove an existence result of solutions for some strongly nonlinear elliptic problems with lower order term and \(L^1\)-data in Musielak–Orlicz–Sobolev spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharouch, L., Bennouna, J., Touzani, A.: Existence of renormalized solutions of some elliptic problems in Orlicz spaces. Rev. Mat. complut. 22(1), 91–110 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aissaoui Fqayeh, A., Benkirane, A., El Moumni, M., Youssfi, A.: Existence of renormalized solutions for some strongly nonlinear elliptic equations in Orlicz spaces. Georgian Math. J. 22(N3), 295–439 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Ait Khellou, M., Benkirane, A.: Elliptic inequalities with \(L^1\) data in Musielak–Orlicz spaces. Monatsh. Math. 183, 1–33 (2017). doi:10.1007/s00605-016-1010-1

  4. Ait Khellou, M., Benkirane, A., Douiri, S.M.: Existence of solutions for elliptic equations having natural growth terms in Musielak–Orlicz spaces. J. Math. Comput. Sci. 4(4), 665–688 (2014)

    Google Scholar 

  5. Ait Khellou, M., Benkirane, A., Douiri, S.M.: An inequality of type Poincaré in Musielak spaces and application to some non-linear elliptic problems with \(L^1\) data. Complex Var. Elliptic Eqs. 60(9), 1217–1242 (2015)

    Article  MATH  Google Scholar 

  6. Azroul, E., Benboubker, M.B., Rhoudaf, M.: Entropy solution for some \(p(x)\)-quasilinear problems with right-hand side measure. Afr. Diaspora J. Math. 13(2), 23–44 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Benkirane, A., Bennouna, J.: Existence of renormalized solutions for some elliptic problems involving derivatives of nonlinear terms in Orlicz spaces. In: Partial Differential Equations, Lecture Notes in Pure and Applied Mathematics, vol. 229, pp. 125–138. Dekker, New York (2002)

  8. Benkirane, A., Sidi El Vally, M., (Ould Mohamedhen Val).: Some approximation properties in Musielak–Orlicz–Sobolev spaces. Thai J. Math. 10(2), 371–381 (2012)

  9. Benkirane, A., Sidi El Vally, M., (Ould Mohamedhen Val).:Variational inequalities in Musielak–Orlicz–Sobolev spaces. Bull. Belg. Math. Soc. Simon Stevin 21, 787–811 (2014)

  10. Diening, L., Harjulehto, P., Hästö, P., Ruzicka, M.: Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  11. Francisco, R.J., Sanchón, M., Miguel, U.J.: The obstacle problem for nonlinear elliptic equations with variable growth and \(L^1\)-data. Monatsh. Math. 154, 303–322 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gwiazda, P., Swierczewska-Gwiazda, A.: On non-Newtonian fluids with a property of rapid thickening under different stimulus. Math. Models Methods Appl. Sci. 18(7), 1073–1092 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gwiazda, P., Minakowski, P., Wróblewska-Kamińska, A.: Elliptic problems in generalized Orlicz–Musielak spaces. Cent. Eur. J. Math. 10(6), 2019–2032 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Gwiazda, P., Wittbold, P., Wrôblewska, A., Zimmermann, A.: Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces. J. Differ. Eqs. 253(2), 635–666 (2012)

  15. Kufner, A., Jhon, O., Opic, B.: Function Spaces. Academia, Praha (1977)

    Google Scholar 

  16. Musielak, J.: Modular Spaces and Orlicz Spaces, Lecture Notes in Mathematics, vol. 1034. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  17. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1974)

    MATH  Google Scholar 

  18. Talha, A., Benkirane, A., Elemine Vall, M.S.B.: Entropy solutions for nonlinear parabolic inequalities involving measure data in Musielak–Orlicz–Sobolev spaces. Bol. Soc. Paran. Mat. 36(2), 199–230 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Youssfi, A.: Existence result for strongly nonlinear elliptic equations in Orlicz–Sobolev spaces. Proyecc. J. Math. 26(2), 157–187 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdeslam Talha.

Additional information

Communicated by A. Constantin.

Appendix

Appendix

Let \(\varphi \) and \(\psi \) be two complementary Musielak–Orlicz functions.

We are interested here in the Dirichlet problem for the operator

$$\begin{aligned} A(u) \equiv \sum _{|\alpha |\le m} (-1)^{|\alpha |} D^{\alpha } A_{\alpha }(x, u, \nabla u,\ldots , \nabla ^m u) \end{aligned}$$
(6.1)

on \(\Omega \).

The basic conditions imposed on the coefficients \(A_{\alpha }\) of (6.1) are the followings:

\((A_1)\) :

Each \(A_{\alpha }(x, \xi )\) is a real valued function defined on \(\Omega \times \mathbb {R}^{N}\) is measurable in x for fixed \(\xi \) and continuous in \(\xi \) for fixed x.

\((A_2)\) :

There exist two Musielak–Orlicz functions \(\gamma \) and \( \varphi \) with \(\gamma \prec \prec \varphi \), functions \(a_{\alpha }\) in \(E_{\psi }(\Omega )\), constants \(c_1\) and \(c_2\) such that for all x in \(\Omega \) and \(\xi \) in \(\mathbb {R}^{N}\),if

$$\begin{aligned} |\alpha |= & {} m : |A_{\alpha }(x, \xi )| \le a_{\alpha }(x) + c_1 \sum _{|\beta | = m} \psi _x^{-1}(\varphi (x,c_2 \xi _\beta )) \\&+\, c_1 \sum _{|\beta | < m} \overline{\gamma _x}^{-1}(\varphi (x,c_2 \xi _\beta )), \end{aligned}$$

if

$$\begin{aligned} |\alpha |< & {} m : |A_{\alpha }(x, \xi )| \le a_{\alpha }(x) + c_1 \sum _{|\beta | = m} \psi _x^{-1}(\gamma (x,c_2 \xi _\beta )) \\&+\, c_1 \sum _{|\beta | < m} \psi _x^{-1}(\varphi (x,c_2 \xi _\beta )). \end{aligned}$$
\((A_3)\) :

For each \(x\in \Omega , \ \eta \in \mathbb {R}^{N}, \ \xi ,\) and \(\xi '\) in \(\mathbb {R}^{N}\) with \(\xi \ne \xi '\),

$$\begin{aligned} \sum _{|\alpha | = m} (A_{\alpha }(x, \xi , \eta ) - A_{\alpha }(x, \xi ', \eta )) \left( \xi _{\alpha } - \xi _{\alpha }'\right) > 0. \end{aligned}$$
\((A_4)\) :

There exist functions \(b_\alpha (x)\) in \(E_{\psi }(\Omega )\), b(x) in \(L^1(\Omega )\), positive constants \(d_1\) and \(d_2\) such that, for some fixed element v in \(W_0^mE_\varphi (\Omega )\),

$$\begin{aligned} \sum _{|\alpha |\le m} A_\alpha (x, \xi ) ( \xi _\alpha - D^\alpha v) \ge d_1 \sum _{|\alpha |\le m} \varphi (x,d_2\xi _\alpha )- \sum _{|\alpha |\le m} b_\alpha (x) \xi _\alpha - b(x) \end{aligned}$$

for all x in \(\Omega \) and \(\xi \) in \(\mathbb {R}^{N}\).

Associated to the differential operator 6.1 we define a mapping T from

$$\begin{aligned} D(T)=\left\{ u\in W_0^mL_\varphi (\Omega ); A_\alpha (\xi (u)) \in L_{\psi }(\Omega ) \text{ for } \text{ all } |\alpha | \le m\right\} \subset W_0^mL_\varphi (\Omega )\end{aligned}$$

into \(W^{-m}L_{\psi }(\Omega )\) by the formula

$$\begin{aligned} < v, Tu > = \int _\Omega \sum _{|\alpha | \le m} A_\alpha (\xi (u)) D^\alpha v dx \end{aligned}$$

for \(v\in W_0^mL_\varphi (\Omega ).\)

For the perturbing function \(g : \Omega \times \mathbb {R} \rightarrow \mathbb {R}, \), we assume the usual conditions. \((G_1)\) g(xu) is a Carathéodory function and satisfies the sign condition

$$\begin{aligned} g(x,u) u \ge 0 \end{aligned}$$

for a.e. x in \(\Omega \) and all u in \(\mathbb {R}\).

\((G_2)\) For each \(r\ge 0\), there exists \(h_r \in L^1(\Omega ) \) such that

$$\begin{aligned} |g(x,u) | \le h_r(x) \end{aligned}$$

for a.e. x in \(\Omega \) and all u in \(\mathbb {R}\) with \(|u|\le r\).

Theorem 6.1

[9] Let \(\Omega \) be a bounded Lipschitz domain in \(\mathbb {R}^{N}\). Assume that the coefficients of (6.1) satisfy \((A_1),\ldots , (A_4)\) with \(m=1\). Let T the corresponding mapping in the complementary system \((W_0^1L_\varphi (\Omega ), W_0^1E_\varphi (\Omega ), W^{-1}L_{\psi }(\Omega ), W^{-1}E_{\psi }(\Omega ))\). Let g(xu) satisfy \((G_1)\) and \((G_2)\). Then there exists \(u \in D(T)\) such that \( g(x, u) \in L^1(\Omega ), \ g(x, u) u \in L^1(\Omega )\) and

$$\begin{aligned} \langle u-v, T u \rangle + \int _\Omega g(x,u) (u-v) dx = \langle u-v, f \rangle \end{aligned}$$
(6.2)

for all \(v \in W^1_0L_\varphi (\Omega )\cap L^\infty (\Omega ).\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talha, A., Benkirane, A. Strongly nonlinear elliptic boundary value problems in Musielak–Orlicz spaces. Monatsh Math 186, 745–776 (2018). https://doi.org/10.1007/s00605-017-1107-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-017-1107-1

Keywords

Mathematics Subject Classification

Navigation