Skip to main content
Log in

Nesterenko’s linear independence criterion for vectors

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In this paper we deduce a lower bound for the rank of a family of \(p\) vectors in \(\mathbb {R}^k\) (considered as a vector space over the rationals) from the existence of a sequence of linear forms on \(\mathbb {R}^p\), with integer coefficients, which are small at \(k\) points. This is a generalization to vectors of Nesterenko’s linear independence criterion (which corresponds to \(k=1\)), used by Ball–Rivoal to prove that infinitely many values of Riemann zeta function at odd integers are irrational. The proof is based on geometry of numbers, namely Minkowski’s theorem on convex bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apéry, R.: Irrationalité de \(\zeta (2)\) et \(\zeta (3)\), in Journées Arithmétiques (Luminy, 1978), Astérisque, no. 61, pp. 11–13 (1979)

  2. Ball, K., Rivoal, T.: Irrationalité d’une infinité de valeurs de la fonction zêta aux entiers impairs. Invent. Math. 146(1), 193–207 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bourbaki, N.: Algèbre, ch. II, Hermann, third edn (1962)

  4. Bugeaud, Y., Laurent, M.: On transfer inequalities in Diophantine approximation, \(II\). Math. Z. 265, 249–262 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cassels, J.: An introduction to the geometry of numbers, Grundlehren der Math. Wiss., no. 99. Springer (1959)

  6. Dauguet, S: Généralisations quantitatives du critère d’indépendance linéaire de Nesterenko, J. Théor. Nombres Bordeaux (to appear)

  7. Dauguet, S., Zudilin, W.: On simultaneous diophantine approximations to \(\zeta (2)\) and \(\zeta (3)\). J. Number Theory 145, 362–387 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fel’dman, N., Nesterenko, Y.: Number theory IV, transcendental numbers, Encyclopaedia of Mathematical Sciences, no. 44. In: Parshin, A.N., Shafarevich, I.R. (eds.). Springer (1998)

  9. Fischler, S.: Nesterenko’s criterion when the small linear forms oscillate. Arch. der Math. 98(2), 143–151 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fischler, S.: Distribution of irrational zeta values, preprint, submitted. arxiv:1310.1685 (2013)

  11. Fischler, S., Hussain, M., Kristensen, S., Levesley, J.: A converse to linear independence criteria, valid almost everywhere. Ramanujan J. (to appear)

  12. Fischler, S., Rivoal, T.: Irrationality exponent and rational approximations with prescribed growth. Proc. Am. Math. Soc. 138(8), 799–808 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fischler, S., Zudilin, W.: A refinement of Nesterenko’s linear independence criterion with applications to zeta values. Math. Ann. 347, 739–763 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gutnik, L.: On the irrationality of some quantities containing \(\zeta (3)\), Acta Arith. 42(3): 255–264, (1983) (in Russian); (translation in Amer. Math. Soc. Transl. 140: 45–55 (1988))

  15. Gutnik, L.: On linear forms with coefficients in \(\mathbb{N}\zeta (1 +\mathbb{N})\). In: Heath-Brown, D., Moroz, B. (eds.) Proceedings of the Session in analytic number theory and Diophantineequations (Bonn, 2002), Bonner Mathematische Schriften, no. 360, pp.1–45 (2003)

  16. Hata, M.: Rational approximations to \(\pi \) and some other numbers. Acta Arith. 63(4), 335–349 (1993)

    MATH  MathSciNet  Google Scholar 

  17. Hata, M.: The irrationality of \(\log (1+1/q)\log (1-1/q)\). Trans. Am. Math. Soc. 350(6), 2311–2327 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hessami Pilehrood, T.: Linear independence of vectors with polylogarithmic coordinates, Vestnik Moskov. Univ. Ser. I Mat. Mekh. [Moscow Univ. Math. Bull.] 54(6): 54–56 [40-42] (1999)

  19. Laurent, M.: On transfer inequalities in Diophantine approximation. In: Chen, W., Gowers, W., Halberstam, H., Schmidt, W., Vaughan, R. (eds.) Analytic Number Theory, Essays in Honour of Klaus Roth, pp. 306–314. Cambridge Univ. Press (2009)

  20. Marcovecchio, R.: Linear independence of linear forms in polylogarithms. Annali Scuola Norm. Sup. Pisa V, no. 1, pp. 1–11 (2006)

  21. Nesterenko, Y.: On the linear independence of numbers, Vestnik Moskov. Univ. Ser. I Mat. Mekh. [Moscow Univ. Math. Bull.] 40, no. 1, pp. 46–49 [69-74] (1985)

  22. Rivoal, T.: La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs, C. R. Acad. Sci. Paris, Ser. I 331, no. 4, pp. 267–270 (2000)

  23. Schmidt, W.: On heights of algebraic subspaces and Diophantine approximations. Ann. Math. 85, 430–472 (1967)

    Article  MATH  Google Scholar 

  24. Sorokin, V: A transcendence measure for \(\pi ^2\), Mat. Sbornik [Sb. Math.] 187(12): 87–120 [1819-1852] (1996)

Download references

Acknowledgments

The author has been partially supported by Agence Nationale de la Recherche (project HAMOT, ref. ANR 2010 BLAN-0115-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Fischler.

Additional information

Communicated by A. Constantin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischler, S. Nesterenko’s linear independence criterion for vectors. Monatsh Math 177, 397–419 (2015). https://doi.org/10.1007/s00605-015-0769-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-015-0769-9

Keywords

Mathematics Subject Classification

Navigation