Skip to main content
Log in

Restricted Kac modules of Hamiltonian Lie superalgebras of odd type

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

This paper aims to describe the restricted Kac modules of restricted Hamiltonian Lie superalgebras of odd type over an algebraically closed field of characteristic \(p>3\). In particular, a sufficient and necessary condition for the restricted Kac modules to be irreducible is given in terms of typical weights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, W., Liu, W.-D.: Superderivations for Lie superalgebras of Cartan-type in modular case. Algebra Represent. Theory 17(1), 69–86 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Kac, V.G.: Classification of infinite-dimensional simple linearly compact Lie superalgebras. Adv. Math. 139(1), 1–55 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lebedev, A.: Analogs of the orthogonal, Hamiltonian, Possion and contact Lie superalgebras in characteristic 2. J. Nonlinear Math. Phys. 17(Supp01), 217–251 (2010)

    Article  MathSciNet  Google Scholar 

  4. Leites, D. (ed.) (J. Bernstein, S. Bouarroudj, B. Clarke, P. Grozman, A. Lebedev, D. Leites, I. Shchepochkina): Representation Theory. (Vol. 2. Nonholonomic Distributions in Quest for Simple Modular Lie Superalgebras), A. Salam School of Mathematical Sciences, Lahore (2009)

  5. Liu, W.-D., Zhang, Y.-Z.: Finite-dimensional odd Hamiltonian superalgebras over a field of prime characteristic. J. Aust. Math. Soc. 79(01), 113–130 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Serganova, V.: On representations of Cartan type Lie superalgebras. Am. Math. Soc. Transl. 2(213), 223–239 (2005)

    MathSciNet  Google Scholar 

  7. Shu, B., Yao, Y.-F.: Character formulas for restricted simple modules of the special superalgebras. Math. Nachr. 285(8–9), 1107–1116 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Shu, B., Zhang, C.-W.: Representations of the restricted Cartan type Lie superalgebra \(W(m, n, {1})\). Algebra Represent. Theory 14(3), 463–481 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Shu, B., Zhang, C.-W.: Restricted representations of the Witt superalgebras. J. Algebra 324(4), 652–672 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Strade, H., Farnsteriner, R.: Modular Lie Algebras and Their Representations. Marcel Dekker, New York (1988)

    MATH  Google Scholar 

  11. Yao, Y.-F.: On restricted representations of the extended special type Lie superalgebra \(\bar{S}(m, n,1)\). Monatsh. Math. 170(2), 239–255 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yao, Y.-F.: Non-restricted representations of simple Lie superalgebras of special type and Hamiltonian type. Sci. China Ser. A. 56(2), 239–252 (2013)

    Article  MATH  Google Scholar 

  13. Yao, Y.-F., Shu, B.: Restricted representations of Lie superalgebras of Hamiltonian type. Algebra Represent. Theory 16(3), 615–632 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, Y.-Z.: Finite-dimensional Lie superalgebras of Cartan type over fields of prime characteristic. Chin. Sci. Bull. 42(9), 720–724 (1997)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor Chaowen Zhang for many conversations and suggestions on the topic. The authors are also grateful to the anonymous referees for their careful reading and helpful suggestion on the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wende Liu.

Additional information

Communicated by J. S. Wilson.

This work was supported by the National Natural Science Foundation of China (Grant No. 11471090, 11171055) and the Natural Science Foundation of Heilongjiang Province Education Department (No. 12541620).

Appendix

Appendix

I. Let

$$\begin{aligned} \phi (x_{i})=\left\{ \begin{array}{ll} \sum _{j=1}^{n}a_{ji}x_{j}&{} \quad \hbox {if} \; i\le n \\ \sum _{j=n+1}^{2n}a_{ji}x_{j}&{} \quad \hbox {if}\; i>n, \end{array} \right. \end{aligned}$$

where \(a_{ji}\in \mathbb {F}.\) If \(\phi =\mathrm {diag}(t,\ldots , t)\in \mathfrak {J},\) then

$$\begin{aligned} f_{\phi }\left( \sum _{i=1}^{2n}x_{i}\partial _{i}\right)&= \sum _{i=1}^{2n}\phi (x_{i})f_{\phi }(\partial _{i})=\sum _{i=1}^{2n}tx_{i}t^{-1}\partial _{i}= \sum _{i=1}^{2n}x_{i}\partial _{i} \end{aligned}$$
(5.1)

and

$$\begin{aligned} f_{\phi }(\mathrm {De}_{f})=t^{\mathrm {deg}f-2}\mathrm {De}_{f} \quad \;\hbox {for}\; f\in \mathcal {O}(n). \end{aligned}$$
(5.2)

If \(\phi \in \mathrm {SP}(n, \mathbb {F}),\) then for \(1 \le i, j\le n,\) we have \(\sum _{k=1}^{n}a_{ik}a_{j^{\prime }{k^{\prime }}}= \delta _{ij}.\) Then

$$\begin{aligned} f_{\phi }\left( \sum _{i=1}^{2n}x_{i}\partial _{i}\right)&= \sum _{i=1}^{2n}\phi (x_{i})f_{\phi }(\partial _{i})\nonumber \\&= \sum _{i=1}^{n}\sum _{j=1}^{n}a_{ji}x_{j}\sum _{k=1}^{n}a_{{k^{\prime }}{i^{\prime }}}\partial _{k}+\sum _{i=n+1}^{2n}\sum _{j=n+1}^{2n}a_{ji}x_{j}\sum _{k=n+1}^{2n} a_{{k^{\prime }}{i^{\prime }}}\partial _{k}\nonumber \\&= \sum _{j,k=1}^{n}\left( \sum _{i=1}^{n}a_{ji}a_{{k^{\prime }}{i^{\prime }}}\right) x_{j}\partial _{k}+\sum _{j,k=n+1}^{2n}\left( \sum _{i=n+1}^{2n}a_{ji}a_{k^{\prime }}{i^{\prime }}\right) x_{j}\partial _{k}\nonumber \\&= \sum _{j,k=1}^{2n}\delta _{jk}x_{j}\partial _{k}=\sum _{i=1}^{2n}x_{i}\partial _{i} \end{aligned}$$
(5.3)

and

$$\begin{aligned} f_{\phi }(\mathrm {De}_{f})=\mathrm {De}_{\phi (f)} \quad \hbox {for}\; f\in \mathcal {O}(n). \end{aligned}$$
(5.4)

Eqs. (5.2) and (5.4) imply that

$$\begin{aligned} f_{\phi }([\mathrm {De}_{f}, \mathrm {De}_{g}])=[f_{\phi }(\mathrm {De}_{f}),f_{\phi }(\mathrm {De}_{g})] \quad \hbox {for}\; f, g\in \mathcal {O}(n). \end{aligned}$$

Using Eqs. (5.15.4) and the fact that \(\phi \) is a \(\mathbb {Z}\)-homogeneous automorphism of \(\mathcal {O}(n)\), we have

$$\begin{aligned} f_{\phi }\left( \left[ \sum _{i=1}^{n}x_{i}\partial _{i}, \mathrm {De}_{f}\right] \right) =\left[ f_{\phi }\left( \sum _{i=1}^{n}x_{i}\partial _{i}\right) ,f_{\phi }(\mathrm {De}_{f})\right] \quad \hbox {for}\; f\in \mathcal {O}(n). \end{aligned}$$

Therefore, \(f_{\phi }\in \mathrm {Aut}\left( \overline{\mathfrak {le}}(n)\right) .\)

II. As in [7], we have

$$\begin{aligned} X(\mathfrak {T})/ p X(\mathfrak {T})\cong \Lambda _{\overline{\mathfrak {le}}(n)}. \end{aligned}$$

Then for \(a\in \mathbf {u}(\overline{\mathfrak {le}}(n))\) and a highest weight vector \(\upsilon _{\lambda }\) of \(L_{\overline{\mathfrak {le}}(n)}^{\mathfrak {b}_{0}}(\lambda )\) with respect to \(\mathfrak {b}_{0}\), we can define

$$\begin{aligned} \overline{t}(a\otimes v_{\lambda })=\mathrm {Ad}(\overline{t})(a)\otimes \lambda (\overline{t})(v_{\lambda }). \end{aligned}$$

Clearly, \(I_{\overline{\mathfrak {le}}(n)}(\lambda )_{\bar{i}},\,i=0, 1\), is a \(\mathfrak {T}\)-module and

$$\begin{aligned} \overline{t}(a\cdot v)=\mathrm {Ad}(\overline{t})(a)\overline{t}(v) \quad \hbox {for}\;\overline{t}\in \mathfrak {T}, a\in \mathbf {u}(\overline{\mathfrak {le}}(n)), v\in I_{\overline{\mathfrak {le}}(n)}(\lambda ). \end{aligned}$$

We claim that the action of \(\mathfrak {T}\) on \(\overline{\mathfrak {le}}(n)\) coincides with that of \(\bar{\mathfrak {h}}.\) For

$$\begin{aligned} \overline{t}=\mathrm {diag}(tt_{1},\ldots ,tt_{n},tt_{1}^{-1},\ldots ,tt_{n}^{-1})\in \mathfrak {T},\;x^{(\underline{r})}\in \mathcal {O}(n)\quad \hbox {and}\quad h\in \bar{\mathfrak {h}}, \end{aligned}$$

we can check the following equations:

$$\begin{aligned} \overline{t}(\mathrm {De}_{x^{(\underline{r})}})&= t^{\mathrm {deg}x^{(\underline{r})}-2} t_{1}^{r_{1}}\ldots t_{n}^{r_{n}}t_{1}^{-r_{n+1}}\ldots t_{n}^{-r_{2n}}\mathrm {De}_{x^{(\underline{r})}}\\&= \left( \sum _{i=1}^{n}(r_{i^\prime }-r_{i})\Lambda _{i}+(\mathrm {deg}x^{(\underline{r})}-2)\Lambda _{n+1}\right) (\overline{t})\mathrm {De}_{x^{(\underline{r})}}, \end{aligned}$$
$$\begin{aligned}&\displaystyle [h,\mathrm {De}_{x^{(\underline{r})}}]=\left( \sum _{i=1}^{n}(r_{i^\prime }-r_{i}) \varepsilon _{i}+(\mathrm {deg}x^{(\underline{r})}-2)\delta \right) (h)\mathrm {De}_{x^{(\underline{r})}},&\\&\displaystyle \overline{t}\left( \sum _{i=1}^{2n}x_{i}\partial _{i}\right) =\sum _{i=1}^{2n}x_{i}\partial _{i}=0(\overline{t})\sum _{i=1}^{2n}x_{i}\partial _{i},&\\&\displaystyle \left[ h,\sum _{i=1}^{2n}x_{i}\partial _{i}\right] =0=0(h)\sum _{i=1}^{2n}x_{i}\partial _{i}.&\end{aligned}$$

Summarizing, the action of \(\mathfrak {T}\) on \(\overline{\mathfrak {le}}(n)\) coincides with that on \(\bar{\mathfrak {h}}.\) Then \(I_{\overline{\mathfrak {le}}(n)}(\lambda )\) is a \(\left( \mathbf {u}(\overline{\mathfrak {le}}(n)),\mathfrak {T}\right) \)-module. Similarly, \(L_{\overline{\mathfrak {le}}(n)}^{\mathfrak {b}_{i}}(\lambda )\) is also a \(\left( \mathbf {u}(\overline{\mathfrak {le}}(n)),\mathfrak {T}\right) \)-module, \( 0 \!\le \! i\!\le \! 2n\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Liu, W. Restricted Kac modules of Hamiltonian Lie superalgebras of odd type. Monatsh Math 178, 473–488 (2015). https://doi.org/10.1007/s00605-014-0700-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-014-0700-9

Keywords

Mathematics Subject Classification

Navigation