Skip to main content
Log in

On the Cauchy problem for the generalized Camassa–Holm equation

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with the Cauchy problem of the generalized Camassa–Holm equation, which was proposed by Hakkaev and Kirchev (Comm Part Diff Equ 30:761–781, 2005). Using a Galerkin-type approximation scheme, it is shown that this equation is well-posed in Sobolev spaces \(H^{s},s>3/2\) for both the periodic and the nonperiodic case in the sense of Hadamard. That is, the data-to-solution map is continuous. Furthermore, it is proved that this dependence is sharp by showing that the solution map is not uniformly continuous. The nonuniform dependence is proved using the method of approximate solutions and well-posedness estimates. Finally, it is shown that the solution map for the generalized Camassa–Holm equation is Hölder continuous in \(H^{r}\)-topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amick, C.J., Fraenkel, L.E., Toland, J.F.: On the stokes conjecture for the wave of extreme form. Acta Math. 148, 193–214 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bona, J., Smith, R.: The initial-value problem for the Korteweg–de Vries equation. Phil. Trans. Roy. Soc. Lond. Ser. A. 278, 555–601 (1975)

    Google Scholar 

  3. Bressan, A., Constantin, A.: Global conservative solutions of the Camassa–Holm equation. Arch. Ration. Mech. Anal. 183, 215–239 (2007)

    Google Scholar 

  4. Bressan, A., Constantin, A.: Global dissipative solutions of the Camassa–Holm equation. Anal. Appl. 5, 1–27 (2007)

    Google Scholar 

  5. Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, R., Liu, Y., Zhang, P.: The Hölder continuity of the solution map to the \(b\)-family equation in weak topology. Math. Ann. 357, 1245–1289 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Christov, O., Hakkaev, S.: On the Cauchy problem for the periodic \(b\)-family of equations and of the non-uniform continuity of Degasperis–Procesi equation. J. Math. Anal. Appl. 360, 47–56 (2009)

    Google Scholar 

  8. Constantin, A.: On the scattering problem for the Camassa–Holm equation. Proc. R. Soc. Lond. A 457, 953–970 (2001)

    Google Scholar 

  9. Constantin, A.: The trajectories of particles in stokes waves. Inv. Math. 166, 523–535 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Constantin, A.: On the inverse spectral problem for the Camassa–Holm equation. J. Funct. Anal. 155, 352–363 (1998)

    Google Scholar 

  11. Constantin, A., Escher, J.: Analyticity of periodic traveling free surface water waves with vorticity. Ann. Math. 173, 559–568 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Constantin, A., Escher, J.: Particle trajectores in solitary water waves. Bull. Amer. Math. Soc. 44, 423–431 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Constantin, A., Gerdjikov, V., Ivanov, R.I.: Inverse scattering transform for the Camassa–Holm equation. Inv. Prob. 22, 2197–2207 (2006)

    Google Scholar 

  15. Constantin, A., Johnson, R.S.: Propagation of very long water waves with vorticity, over variable depth, with applications to tsunamis. Fluid Dyn. Res. 40, 175–211 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Constantin, A., Kappeler, T., Kolev, B., Topalov, T.: On Geodesic exponential maps of the Virasoro group. Ann. Glob. Anal. Geom. 31, 155–180 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal. 192, 165–186 (2009)

    Google Scholar 

  18. Constantin, A., McKean, H.P.: A shallow water equation on the circle. Comm. Pure Appl. Math. 52, 949–982 (1999)

    Article  MathSciNet  Google Scholar 

  19. Constantin, A., Strauss, W.: Stability of peakons. Comm. Pure Appl. Math. 53, 603–610 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Davidson, M.: Continuity properties of the solution map for the generalized reduced Ostrovsky equation. J. Diff. Equ. 252, 3797–3815 (2012)

    Article  MATH  Google Scholar 

  21. Fokas, A., Fuchssteiner, B.: Symplectic structures, their backlund transformation and hereditary symmetries. Physica D 4, 47–66 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  22. Grayshan, K.: Continuity properties of the data-to-solution map for the periodic \(b\)-family equation. Diff. Integr. Equ. 25, 1–20 (2012)

    MATH  MathSciNet  Google Scholar 

  23. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry. J. Fun. Anal. 74, C160–C197 (1987)

    Article  MathSciNet  Google Scholar 

  24. Hakkaev, S., Kirchev, K.: Local well-posedness and orbital stability of solitary wave solutions for the generalized Camassa–Holm equation. Comm. Part. Diff. Equ. 30, 761–781 (2005)

    Google Scholar 

  25. Himonas, A., Holliman, C.: Hö lder continuity of the solution map for the Novikov equation. J. Math. Phys. 54, 061501 (2013)

    Article  MathSciNet  Google Scholar 

  26. Himonas, A., Holliman, C.: On well-posedness of the Degasperis–Procesi equation. Dis. Contin. Dyn. Syst. 31, 469–488 (2011)

    Google Scholar 

  27. Himonas, A., Holliman, C.: The Cauchy problem for the Novikov equation. Nonlinearity 25, 449–479 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Himonas, A., Kenig, C.: Non-uniform dependence on initial data for the CH equation on the line. Diff. Integr. Equ. 22, 201–224 (2009)

    MATH  MathSciNet  Google Scholar 

  29. Himonas, A., Kenig, C., Misiołek, G.: Non-uniform dependence for the periodic CH equation. Comm. Part. Diff. Equ. 35, 1145–1162 (2010)

    Article  MATH  Google Scholar 

  30. Himonas, A., Mantzavinos, D.: The Cauchy problem for the Fokas–Olver–Rosenau–Qiao equation. Nonlin. Anal. 95, 499–529 (2014)

    Google Scholar 

  31. Himonas, A., Misiolek, G.: Non-uniform dependence on initial data of solutions to the Euler equations of hydrodynamics. Commun. Math. Phys. 296, C285–C301 (2009)

    Article  MathSciNet  Google Scholar 

  32. Himonas, A., Misiolek, G.: High-frequency smooth solutions and well-posedness of the Camassa–Holm equation. Int. Math. Res. Not. 51, 3135–3151 (2005)

    Google Scholar 

  33. Himonas, A., Misiołek, G., Ponce, G.: Non-uniform continuity in H\(^{1}\) of the solution map of the CH equation. Asian J. Math. 11, 141–150 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  34. Holden, H., Raynaud, X.: Global conservative solutions of the Camassa–Holm equations: a Lagrangianpoiny of view. Comm. Part. Dif. Equ. 32, 1511–1549 (2007)

    Google Scholar 

  35. Holden, H., Raynaud, X.: Dissipative solutions for the Camassa–Holm equation. Dis. Contin. Dyn. Syst. 24, 1047–1112 (2009)

    Google Scholar 

  36. Holliman, C.: Non-uniform dependence and well-posedness for the periodic Hunter–Saxton equation. Diff. Int. Eq. 23, 1150–1194 (2010)

    Google Scholar 

  37. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Comm. Pure Appl. Math. 41, 891–907 (1988)

    Google Scholar 

  38. Lai, S., Wu, Y.: The local well-posedness and existence of weak solutions for ageneralized Camassa–Holm equation. J. Diff. Equ. 248, 2038–2063 (2010)

    Google Scholar 

  39. Lakshmanan, M.: Integrable nonlinear wave equations and possible connections to tsunami dynamics. In: Kundu, A. (ed.) Tsunami and Nonlinear Waves, pp. 31–49. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  40. Liu, X., Yin, Z.: Local well-posedness and stability of peakons for a generalized Dullin–Gottwald–Holm equation. Nonlin. Anal. 74, 2497–2507 (2011)

    Google Scholar 

  41. Mi, Y., Mu, C.: Well-posedness and analyticity for the Cauchy problem for the generalized Camassa–Holm equation. J. Math. Anal. Appl. 405, 173–182 (2013)

    Google Scholar 

  42. Misiolek, G.A.: Shallow water equation as a geodesic flow on the Bott–Virasoro group. J. Geom. Phys. 24, 203–208 (1998)

    Google Scholar 

  43. Segur, H.: Integrable models of waves in shallow water. In: Probability, Geometry and Integrable Systems, MSRI Publ., vol. 55, pp. 345–371. Cambridge Univ. Press, Cambridge (2008)

  44. Segur, H.: Waves in shallow water with emphasis on the tsunami of 2004, In: Tsunami and Nonlinear Waves. Springer, Berlin 2007, 3–29 (2004)

  45. Taylor, M.: Pseudodifferential operators and nonlinear PDE. Birkhäuser, Boston (1991)

    Book  MATH  Google Scholar 

  46. Taylor, M.: Partial Differential Equations. Nonlinear Equations. Springer III, Berlin (1996)

    Book  Google Scholar 

  47. Zhou, S.: Persistence properties for a generalized Camassa–Holm equation in weighted \(L^{p}\) spaces. J. Math. Anal. Appl. 410, 932–938 (2013)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by NSF of China (11371384), partially supported by NSF of Chongqing (cstc2013jcyjA0940) and partially supported by by NSF of Fuling (FLKJ,2013ABA2036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Mi.

Additional information

Communicated by A. Constantin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mi, Y., Mu, C. On the Cauchy problem for the generalized Camassa–Holm equation. Monatsh Math 176, 423–457 (2015). https://doi.org/10.1007/s00605-014-0625-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-014-0625-3

Keywords

Mathematical Subject Classification (2000)

Navigation