Skip to main content
Log in

A breakthrough in phytochemical profiling: ultra-sensitive surface-enhanced Raman spectroscopy platform for detecting bioactive components in medicinal and edible plants

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A perennial challenge in harnessing the rich biological activity of medicinal and edible plants is the accurate identification and sensitive detection of their active compounds. In this study, an innovative, ultra-sensitive detection platform for plant chemical profiling is created using surface-enhanced Raman spectroscopy (SERS) technology. The platform uses silver nanoparticles as the enhancing substrate, excess sodium borohydride prevents substrate oxidation, and methanol enables the tested molecules to be better adsorbed onto the silver nanoparticles. Subsequently, nanoparticle aggregation to form stable “hot spots” is induced by Ca2+, and the Raman signal of the target molecule is strongly enhanced. At the same time, deuterated methanol was used as the internal standard for quantitative determination. The method has excellent reproducibility, RSD ≤ 1.79%, and the enhancement factor of this method for the detection of active ingredients in the medicinal plant Coptis chinensis was 1.24 × 109, with detection limits as low as 3 fM. The platform successfully compared the alkaloid distribution in different parts of Coptis chinensis: root > leaf > stem, and the difference in content between different batches of Coptis chinensis decoction was successfully evaluated. The analytical technology adopted by the platform can speed up the determination of Coptis chinensis and reduce the cost of analysis, not only making better use of these valuable resources but also promoting development and innovation in the food and pharmaceutical industries. This study provides a new method for the development, evaluation, and comprehensive utilization of both medicinal and edible plants. It is expected that this method will be extended to the modern rapid detection of other medicinal and edible plants and will provide technical support for the vigorous development of the medicinal and edible plants industry.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data are available from the corresponding author on reasonable request.

References

  1. Teixidor-Toneu I, Jordan FM, Hawkins JA (2018) Comparative phylogenetic methods and the cultural evolution of medicinal plant use. Nat Plants 4(10):754–761

    CAS  PubMed  Google Scholar 

  2. Ooi GL (1993) What future for traditional Chinese medicine outside China? World Health Forum 14(1):79

    CAS  PubMed  Google Scholar 

  3. Tasneem S, Liu B, Li B, Choudhary MI, Wang W (2019) Molecular pharmacology of inflammation: medicinal plants as anti-inflammatory agents. Pharmacol Res 139:126–140

    CAS  PubMed  Google Scholar 

  4. Manukumar HM, Shiva Kumar J, Chandrasekhar B, Raghava S, Umesha S (2017) Evidences for diabetes and insulin mimetic activity of medicinal plants: present status and future prospects. Crit Rev Food Sci 57(12):2712–2729

    CAS  Google Scholar 

  5. Shang A, Gan RY (2021) Effects and mechanisms of edible and medicinal plants on obesity: an updated review. Crit Rev Food Sci 61(12):2061–2077

    CAS  Google Scholar 

  6. Schafhauser T, Jahn L, Kirchner N, Kulik A, Flor L, Lang A, Caradec T, Fewer DP, Sivonen K (2019) Antitumor astins originate from the fungal endophyte Cyanodermella asteris living within the medicinal plant Aster tataricus. P Natl Acad Sci Usa 116(52):26909–26917

    CAS  Google Scholar 

  7. Tahir Ul Qamar M, Alqahtani SM, Alamri MA, Chen L-L (2020) Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal 10(4):313–319

    PubMed  PubMed Central  Google Scholar 

  8. Jiang Y, David B, Tu P, Barbin Y (2010) Recent analytical approaches in quality control of traditional Chinese medicines–a review. Anal Chim Acta 657(1):9–18

    CAS  PubMed  Google Scholar 

  9. Yang Y, Li SS, Teixeira Da Silva JA, Yu XN, Wang LS (2020) Characterization of phytochemicals in the roots of wild herbaceous peonies from China and screening for medicinal resources. Phytochemistry 174:112331

    CAS  PubMed  Google Scholar 

  10. Zhan W, Yang X, Lu G, Deng Y, Yang L (2022) A rapid quality grade discrimination method for Gastrodia elata powder using ATR-FTIR and chemometrics. Spectrochim Acta A 264:120189

    CAS  Google Scholar 

  11. Liu W, Dai LK (2017) Online analysis of dynamic trend regression and endpoint determination for Chinese traditional medicine extraction process based on ultraviolet spectroscopy. Guang Pu Xue Yu Guang Pu Fen Xi 37(2):497–502

    CAS  PubMed  Google Scholar 

  12. Luo L, Dong L, Huang Q, Ma S, Fantke P, Li J, Jiang J, Fitzgerald M, Yang J, Jia Z, Zhang J (2021) Detection and risk assessments of multi-pesticides in 1771 cultivated herbal medicines by LC/MS-MS and GC/MS-MS. Chemosphere 262:127477

    CAS  PubMed  Google Scholar 

  13. Ren Y, Wang Z, Wu C, Dong H, Gan C, Fan L, Wang W, Yang C (2019) Ultrahigh-performance liquid chromatography with tandem mass spectrometry for the determination of 10 alkaloids in beagle plasma after the oral administration of the three Coptidis rhizoma extracts. J Ethnopharmacol 239:111896

    CAS  PubMed  Google Scholar 

  14. Huang H, Lv Y, Sun X, Fu S, Lou X, Liu Z (2018) Rapid determination of tannin in Danshen and Guanxinning injections using UV spectrophotometry for quality control. J Innov Opt Heal Sci 11(06):1850034

    CAS  Google Scholar 

  15. Xiang L, Wang J, Zhang G, Rong L, Wu H, Sun S, Guo Y, Yang Y, Lu L, Qu L (2016) Analysis and identification of two similar traditional Chinese medicines by using a three-stage infrared spectroscopy: Ligusticum chuanxiong, Angelica sinensis and their different extracts. J Mol Struct 1124:164–172

    CAS  Google Scholar 

  16. Yang Y, Peng J, Li F, Liu X, Deng M, Wu H (2017) Determination of alkaloid contents in various tissues of Coptis chinensis Franch. by reversed phase-high performance liquid chromatography and ultraviolet spectrophotometry. J Chromatogr Sci 55(5):556–63

    CAS  PubMed  Google Scholar 

  17. Chen J, Wang F, Liu J, Lee FS-C, Wang X, Yang H (2008) Analysis of alkaloids in Coptis chinensis Franch by accelerated solvent extraction combined with ultra performance liquid chromatographic analysis with photodiode array and tandem mass spectrometry detections. Anal Chim Acta 613(2):184–195

    CAS  PubMed  Google Scholar 

  18. Yilmaz H, Yilmaz D, Taskin IC, Culha M (2022) Pharmaceutical applications of a nanospectroscopic technique: surface-enhanced Raman spectroscopy. Adv Drug Deliv Rev 184:114184

    CAS  PubMed  Google Scholar 

  19. Zanchi C, Lucotti A, Tommasini M, Trusso S, De Grazia U, Ciusani E, Ossi PM (2015) Au nanoparticle-based sensor for apomorphine detection in plasma. Beilstein J Nanotechnol 6:2224–2232

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Deng B, Luo X, Zhang M, Ye L, Chen Y (2019) Quantitative detection of acyclovir by surface enhanced Raman spectroscopy using a portable Raman spectrometer coupled with multivariate data analysis. Colloids Surf B Biointerfaces 173:286–294

    CAS  PubMed  Google Scholar 

  21. Sharma B, Frontiera RR, Henry AI, Ringe E, Duyne RPV (2012) SERS: materials, applications, and the future. Mater Today 15(1–2):16–25

    CAS  Google Scholar 

  22. Li D, Yao D, Li C, Luo Y, Jiang Z (2020) Nanosol SERS quantitative analytical method: a review. Trac-Trend Anal Chem 127:115885

    CAS  Google Scholar 

  23. Tommasini M, Zanchi C, Lucotti A, Bombelli A, Villa NS, Casazza M, Ciusani E, De Grazia U, Santoro M, Fazio E, Neri F, Trusso S, Ossi PM (2019) Laser-synthesized SERS substrates as sensors toward therapeutic drug monitoring. Nanomaterials 9(5):677

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ouyang L, Zhang Q, Ma G, Zhu L, Wang Y, Chen Z, Wang Y, Zhao L (2019) New dual-spectroscopic strategy for the direct detection of aristolochic acids in blood and tissue. Anal Chem 91(13):8154–8161

    CAS  PubMed  Google Scholar 

  25. Song-Bai SU, Zhang YP, Zhang LL, Zhu-Ying HE, Zhang JL (2011) Review on Raman spectroscopy application in quality control of traditional Chinese Medicine. Chinese J ETMF 17(08):284–286

    Google Scholar 

  26. Huang C-C (2016) Applications of Raman spectroscopy in herbal medicine. Appl Spectrosc Rev 51(1):1–11

    Google Scholar 

  27. Lin J, Chen W, Yu Y, Lin D, Feng S, Chen R (2016) Surface-enhanced Raman scattering spectroscopic analysis of Saposhnikovia divaricata decoction. Spectrosc Lett 49(3):204–207

    CAS  Google Scholar 

  28. Chen W, Lin J, Chen R, Feng S, Yu Y, Lin D, Huang M, Shi H, Huang H (2015) Detection and identification of Huo–Xue–Hua–Yu decoction (HXHYD) using surface-enhanced Raman scattering (SERS) spectroscopy and multivariate analysis. Laser Phys Lett 12(4):045602

    Google Scholar 

  29. Huang H, Shi H, Feng S, Lin J, Chen W, Yu Y, Lin D, Xu Q, Chen R (2012) Quick detection of traditional Chinese medicine ‘Atractylodis Macrocephalae Rhizoma’ pieces by surface-enhanced Raman spectroscopy. Laser Phys 23(1):015601

    Google Scholar 

  30. Gao Y, Hu Z, Wu J, Ning Z, Jian J, Zhao T, Liang X, Yang X, Yang Z, Zhao Q, Wang J, Wang Z, Dina NE, Gherman AMR, Jiang Z, Zhou H (2019) Size-tunable Au@Ag nanoparticles for colorimetric and SERS dual-mode sensing of palmatine in traditional Chinese medicine. J Pharm Biomed Anal 174:123–133

    CAS  PubMed  Google Scholar 

  31. Liu E, Han L, Fan X, Yang Z, Jia Z, Shi S, Huang Y, Cai L, Yuan X (2022) New rapid detection method of total chlorogenic acids in plants using SERS based on reusable Cu(2)O-Ag substrate. Talanta 247:123552

    CAS  PubMed  Google Scholar 

  32. Rauf A, Patel S, Uddin G, Siddiqui BS, Ahmad B, Muhammad N, Mabkhot YN, Hadda TB (2017) Phytochemical ethnomedicinal uses and pharmacological profile of genus Pistacia. Biomed Pharmacother 86:393–404

    CAS  PubMed  Google Scholar 

  33. Wu J, Luo Y, Jiang Q, Li S, Huang W, Xiang L, Liu D, Hu Y, Wang P, Lu X, Zhang G, Wang F, Meng X (2019) Coptisine from Coptis chinensis blocks NLRP3 inflammasome activation by inhibiting caspase-1. Pharmacol Res 147:104348

    CAS  PubMed  Google Scholar 

  34. Moeini R, Memariani Z, Asadi F, Bozorgi M, Gorji N (2019) Pistacia genus as a potential source of neuroprotective natural products. Planta Med 85(17):1326–1350

    CAS  PubMed  Google Scholar 

  35. Friedemann T, Schumacher U, Tao Y, Leung AK, Schröder S (2015) Neuroprotective activity of coptisine from Coptis chinensis (Franch). Evid Based Complement Alternat Med 2015:827308

    PubMed  PubMed Central  Google Scholar 

  36. Kim SY, Park C, Kim MY, Ji SY, Hwangbo H, Lee H, Hong SH, Han MH, Jeong J-W, Kim G-Y, Son C-G, Cheong J, Choi YH (2021) ROS-mediated anti-tumor effect of Coptidis rhizoma against human hepatocellular carcinoma Hep3B cells and xenografts. Int J Mol Sci 22(9):4797

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lang L, Hu Q, Wang J, Liu Z, Huang J, Lu W, Huang Y (2018) Coptisine, a natural alkaloid from Coptidis rhizoma, inhibits plasmodium falciparum dihydroorotate dehydrogenase. Chem Biol Drug Des 92(1):1324–1332

    CAS  PubMed  Google Scholar 

  38. Wang J, Ran Q, Zeng H-R, Wang L, Hu C-J, Huang Q-W (2018) Cellular stress response mechanisms of rhizoma Coptidis: a systematic review. Chin Med 13(1):27

    PubMed  PubMed Central  Google Scholar 

  39. Cheng M, Yao C, Li Y, Li Z, Li H, Yao S, Qu H, Li J, Wei W, Zhang J, Guo DA (2021) A strategy for practical authentication of medicinal plants in traditional Chinese medicine prescription, paeony root in ShaoYao-GanCao decoction as a case study. J Sep Sci 44(12):2427–2437

    CAS  PubMed  Google Scholar 

  40. Zhang L, Yan J, Liu X, Ye Z, Yang X, Meyboom R, Chan K, Shaw D, Duez P (2012) Pharmacovigilance practice and risk control of traditional Chinese medicine drugs in China: current status and future perspective. J Ethnopharmacol 140(3):519–525

    PubMed  Google Scholar 

  41. Zhong XK, Li DC, Jiang JG (2009) Identification and quality control of Chinese medicine based on the fingerprint techniques. Curr Med Chem 16(23):3064–3075

    CAS  PubMed  Google Scholar 

  42. Yao X, Lin J, Zhou Q, Song Y, Sun T, Qiu X, Cao B, Li Y (2023) A new platform for rapid and indiscriminate detection of environmental pollutants based on surface-enhanced Raman spectroscopy. Environ Sci-Nano 10(9):2374–2386

    CAS  Google Scholar 

  43. Oćwieja M, Barbasz A, Walas S, Roman M, Paluszkiewicz C (2017) Physicochemical properties and cytotoxicity of cysteine-functionalized silver nanoparticles. Colloid Surface B 160:429–437

    Google Scholar 

  44. Ranishenka BV, Panarin AY, Chelnokova IA, Terekhov SN, Mojzes P, Shmanai VV (2021) Modification of a SERS-active Ag surface to promote adsorption of charged analytes: effect of Cu2+ ions. Beilstein J Nanotech 12:902–912

    CAS  Google Scholar 

  45. Guingab JD, Lauly B, Smith BW, Omenetto N, Winefordner JD (2007) Stability of silver colloids as substrate for surface enhanced Raman spectroscopy detection of dipicolinic acid. Talanta 74(2):271–274

    CAS  PubMed  Google Scholar 

  46. Šloufová I, Šišková K, Vlčková B, Štěpánek J (2008) SERS-activating effect of chlorides on borate-stabilized silver nanoparticles: formation of new reduced adsorption sites and induced nanoparticle fusion. Phys Chem Chem Phys 10(16):2233–2242

    PubMed  Google Scholar 

  47. Kazanci M, Schulte JP, Douglas C, Fratzl P, Pink D, Smith-Palmer T (2009) Tuning the surface-enhanced Raman scattering effect to different molecular groups by switching the silver colloid solution pH. Appl Spectrosc 63(2):214–223

    CAS  PubMed  Google Scholar 

  48. Cheng Y, Ding Y, Chen J, Xu W, Wang W, Xu S (2022) Au nanoparticles decorated covalent organic framework composite for SERS analyses of malachite green and thiram residues in foods. Spectrochim Acta A Mol Biomol Spectrosc 281:121644

    CAS  PubMed  Google Scholar 

  49. Pérez-Jiménez AI, Lyu D, Lu Z, Liu G, Ren B (2020) Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments. Chem Sci 11(18):4563–4577

    PubMed  PubMed Central  Google Scholar 

  50. Wang X, Liu X, Wang X, Wang Y, Xiao Y, Zhuo Z, Li Y (2022) A versatile technique based on surface-enhanced Raman spectroscopy for label-free detection of amino acids and peptide formation in body fluids. Microchim Acta 189(2):82

    CAS  Google Scholar 

  51. Zhang F, Wang X, Zhang T, Zhang Z, Gao X, Li Y (2023) Rapid detection of SARS-CoV-2 spike RBD protein in body fluid: based on special calcium ion-mediated gold nanoparticles modified by bromide ions. J Phys Chem Lett 14(1):88–94

    CAS  PubMed  Google Scholar 

  52. Zhang Y, Zeng J, Huang C, Zhu B, Zhang Q, Chen D (2022) Label-free detection of ssDNA base insertion and deletion mutations by surface-enhanced Raman spectroscopy. Anal Bioanal Chem 414(4):1461–1468

    CAS  PubMed  Google Scholar 

  53. Yang N, Wang Y, Wang X, Zhang F, Xiao Y, Yan B, Zhang T, Liu X, Li Y (2022) Label-free detection of DNA supramolecular structure formation by surface-enhanced Raman spectroscopy. J Phys Chem Lett 13(26):6208–6214

    CAS  PubMed  Google Scholar 

  54. Li D, Zhang Z, Wang X, Wang Y, Gao X, Li Y (2022) A direct method for detecting proteins in body fluids by surface-enhanced Raman spectroscopy under native conditions. Biosens Bioelectron 200:113907

    CAS  PubMed  Google Scholar 

  55. Zhang Z, Li D, Wang X, Wang Y, Lin J, Jiang S, Wu Z, He Y, Gao X, Zhu Z, Xiao Y, Qu Z, Li Y (2022) Rapid detection of viruses: based on silver nanoparticles modified with bromine ions and acetonitrile. Chem Eng J 438:135589

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Li X, Wang X, Liu J, Dai M, Zhang Q, Li Y (2022) Surface-enhanced Raman spectroscopy detection of organic molecules and in situ monitoring of organic reactions by ion-induced silver nanoparticle clusters. Phys Chem Chem Phys 24(5):2826–2831

    CAS  PubMed  Google Scholar 

  57. Zeng J, Dong M, Zhu B, Gao X, Chen D, Li Y (2021) Label-free detection of c-T mutations by surface-enhanced Raman spectroscopy using thiosulfate-modified nanoparticles. Anal Chem 93(4):1951–1956

    CAS  PubMed  Google Scholar 

  58. Liu L, Zhang T, Wu Z, Zhang F, Wang Y, Wang X, Zhang Z, Li C, Lv X, Chen D, Jiao S, Wu J, Li Y (2023) Universal method for label-free detection of pathogens and biomolecules by surface-enhanced Raman spectroscopy based on gold nanoparticles. Anal Chem 95(8):4050–4058

    CAS  PubMed  Google Scholar 

  59. Li R, Mao Z, Chen L, Lv H, Cheng J, Zhao B (2015) Vibrational spectroscopy and density functional theory study of 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide. Spectrochim Acta A 135:1–6

    CAS  Google Scholar 

  60. Zhao Z, Guo P, Brand E (2012) The formation of daodi medicinal materials. J Ethnopharmacol 140(3):476–481

    PubMed  Google Scholar 

  61. Chen LL, Verpoorte R, Yen HR, Peng WH, Cheng YC, Chao J, Pao LH (2018) Effects of processing adjuvants on traditional Chinese herbs. J Food Drug Anal 26(2s):S96-s114

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang FL, Yin XJ, Yan YL, Wu QF (2022) Pharmacokinetics and pharmacodynamics of Huanglian-Houpo decoction based on berberine hydrochloride and magnolol against H1N1 influenza virus. Eur J Drug Metab Ph 47(1):57–67

    CAS  Google Scholar 

  63. Wang Z, Yang Y, Liu M, Wei Y, Liu J, Pei H, Li H (2020) Rhizoma Coptidis for Alzheimer’s disease and vascular dementia: a literature review. Curr Vasc Pharmacol 18(4):358–368

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Introduce High-Level Talent Incentive Project (no. 0103–31021200052), HMU Marshal Initiative Funding (no. HMUMIF-21012), and National Natural Science Foundation for Youth (no. 82202648).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Li.

Ethics declarations

Ethics approval

This research did not involve human or animal samples.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4059 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Zhao, Y., Jiang, S. et al. A breakthrough in phytochemical profiling: ultra-sensitive surface-enhanced Raman spectroscopy platform for detecting bioactive components in medicinal and edible plants. Microchim Acta 191, 286 (2024). https://doi.org/10.1007/s00604-024-06360-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06360-x

Keywords

Navigation