Skip to main content
Log in

Novel immunosensor based on electrochemiluminescence inner filter effect and static quenching between fibrillary Ag-MOGs and SiO2@PANI@AuNPs for enabling the sensitive detection of neuron-specific enolase

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Metal-organic gels (MOGs) are unique supramolecular gels that are convenient to synthesize. In this work, a cathodic electrochemiluminescence (ECL) system based on Ag-MOGs as a luminophore and K2S2O8 as a co-reactor was developed. The ECL spectrum of the Ag-MOGs overlapped significantly with the strong UV-Vis spectrum of the SiO2@PANI@AuNPs, which effectively quenched the ECL luminescence of the Ag-MOGs. Relying on the inner filter effect between Ag-MOGs and SiO2@PANI@AuNPs, a novel ECL-IFE immunosensor was developed for the detection of neuron-specific enolase (NSE). Under optimal conditions, the ECL signal of the immunosensor displayed excellent linearity over the NSE concentration range of 10 fg/mL–100 ng/mL. The limit of detection (LOD) was 2.6 fg/mL (S/N = 3) with a correlation coefficient R2 of 0.9975. The ECL immunosensor also exhibited excellent stability and reproducibility for the detection of NSE. The results reported provide a feasible concept for the development analytical methods for the detection of other clinically relevant biomarkers.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aydın EB, Aydın M, Sezgintürk MK (2020) Selective and ultrasensitive electrochemical immunosensing of NSE cancer biomarker in human serum using epoxy-substituted poly(pyrrole) polymer modified disposable ITO electrode. Sensor Actuat B-Chem 306:127613

    Google Scholar 

  2. Li M, Fang J, Wang C, Zhang J, Liu L, Li Y, Cao W, Wei Q (2022) CePO4/CeO2 heterostructure and enzymatic action of D-Fe2O3 co-amplify luminol-based electrochemiluminescence immunosensor for NSE detection. Biosens Bioelectron 214:114516

    CAS  PubMed  Google Scholar 

  3. Song X, Zhao L, Ren X, Feng T, Ma H, Wu D, Li Y, Luo C, Wei Q (2022) Highly efficient PTCA/Co3O4/CuO/S2O82- ternary electrochemiluminescence system combined with a portable chip for bioanalysis. ACS Sensors 7:2273–2280

    CAS  PubMed  Google Scholar 

  4. Ai Y, Li X, Zhang L, Zhong W, Wang J (2018) Highly sensitive electrochemiluminescent immunoassay for neuron-specific enolase amplified by single-walled carbon nanohorns and enzymatic biocatalytic precipitation. J Electroanal Chem 818:257–264

    CAS  Google Scholar 

  5. Khakzad AA, Ghobadi H, Karami P, Johari-Ahar M (2022) Highly sensitive electrochemiluminescent immunoassay for detecting neuron-specific enolase (NSE) based on polyluminol and glucose oxidase-conjugated glucose-encapsulating liposome. Microchem J 181:107785

    Google Scholar 

  6. Ferraro S, Braga F, Luksch R, Terenziani M, Caruso S, Panteghini M (2020) Measurement of serum neuron-specific enolase in neuroblastoma: is there a clinical role. Clin Chem 66:667–675

    PubMed  Google Scholar 

  7. Wang H, Wang M, Wang H, Ren X, Wang H, Wei Q, Wu D (2022) Detection of NSE by a photoelectrochemical self-powered immunosensor integrating RGO photocathode and WO3/Mn: CdS nanomaterial photoanode. Biosens Bioelectron 207:114196

    CAS  PubMed  Google Scholar 

  8. Kalkal A, Kumar S, Manik G, Sen P, Kumar S, Packirisamy G (2022) Ti3C2-MXene decorated with nanostructured silver as a dual-energy acceptor for the fluorometric neuron specific enolase detection. Biosens Bioelectron 195:113620

    CAS  PubMed  Google Scholar 

  9. Zhang N, Leng D, Wang Y, Ru Z, Zhao G, Li Y, Zhang D, Wei Q (2022) Split-type photoelectrochemical/visual sensing platform based on SnO2/MgIn2S4/Zn0.1Cd0.9S composites and Au@Fe3O4 nanoparticles for ultrasensitive detection of neuron specific enolase. Anal Chem 94:15873–15878

    CAS  PubMed  Google Scholar 

  10. Xu K, Dai L, Du Y, Liu L, Zhang N, Feng R, Xu R, Wei Q (2024) A signal polarity conversion photoelectrochemical immunosensor for neuron-specific enolase detection based on MgIn2S4-sensitized CsPbBr3. Microchim Acta 191:84

    CAS  Google Scholar 

  11. Fan D, Luo J, Gong Z, Wang H, Ma H, Wu D, Wei Q, Ju H (2023) Polyacrylic acid/polyethylene glycol hybrid antifouling interface for photoelectrochemical immunosensing of NSE based on ZnO/CdSe. Anal Chim Acta 1254:341085

    CAS  PubMed  Google Scholar 

  12. Liang H, Luo Y, Xiao Y, Xiong J, Chen R, Song Y, Wang L (2023) Immunosensing of neuron-specific enolase based on dual signal amplification strategy via electrocatalytic oxygen reduction by iron-porphyrin covalent organic framework. Chem Eng J 460:141740

    CAS  Google Scholar 

  13. Karaman C, Bölükbaşı ÖS, Yola BB, Karaman O, Atar N, Yola ML (2022) Electrochemical neuron-specific enolase (NSE) immunosensor based on CoFe2O4@Ag nanocomposite and AuNPs@MoS2/rGO. Anal Chim Acta 1200:339609

    CAS  PubMed  Google Scholar 

  14. Yu X, Li Y, Li Y, Liu S, Wu Z, Dong H, Xu Z, Li X, Liu Q (2022) An electrochemical amplification strategy based on the ferrocene functionalized cuprous oxide superparticles for the detection of NSE. Talanta 236:122865

    CAS  PubMed  Google Scholar 

  15. Wang Y, Zhao P, Mao L, Hou Y, Li D (2018) Determination of brain injury biomarkers by surface-enhanced Raman scattering using hollow gold nanospheres. RSC Adv 8:3143–3150

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Fan M, Li Y, Chen J, Lin Y, Lai S, Peng S, Lin D, Wang J, Lu Y, Feng S (2023) Plasmonic internal standard-decorated nitrocellulose membranes for duplex detection of circulating tumor biomarkers. Sens Actuators B Chem 395:134508

    CAS  Google Scholar 

  17. Shao X, Luo J, Gong Z, Sun X, Ma H, Wu D, Fan D, Li Y, Wei Q, Ju H (2023) A quenching electrochemiluminescence immunosensor based on a novel Ag@Ce2Sn2O7 luminophore for the detection of neuron-specific enolase. Sensor Actuat B-Chem 374:132810

    CAS  Google Scholar 

  18. Dong J, Xu Y, Zhang Z, Feng J (2022) Operando imaging of chemical activity on gold plates with single-molecule electrochemiluminescence microscopy. Angew Chem Int Ed 61:e202200187

    CAS  Google Scholar 

  19. Liu Y, Zhang H, Li B, Liu J, Jiang D, Liu B, Sojic N (2021) Single biomolecule imaging by electrochemiluminescence. J Am Chem Soc 143:17910–17914

    CAS  PubMed  Google Scholar 

  20. Qin D, Meng S, Wu Y, Mo G, Deng B (2022) Aggregation-induced electrochemiluminescence resonance energy transfer with dual quenchers for the sensitive detection of prostate-specific antigen. Sensor Actuat B-Chem 367:132176

    CAS  Google Scholar 

  21. Sun Y, Fang L, Han Y, Feng A, Liu S, Zhang K, Xu J (2022) Reversible ratiometric electrochemiluminescence biosensor based on DNAzyme regulated resonance energy transfer for myocardial miRNA detection. Anal Chem 94:7035–7040

    CAS  PubMed  Google Scholar 

  22. He Y, Wang T, Cao J, Zhao F, Zeng B (2023) Molecular imprinting electrochemiluminescence sensor based on nitrogen-doped carbon quantum dots /Ru(bpy)3@SiO2 for the determination of citrinin. Microchim Acta 190:155

    CAS  Google Scholar 

  23. Chen M, Xu C, Zhao W, Chen H, Xu J (2022) Single cell imaging of electrochemiluminescence-driven photodynamic therapy. Angew Chem Int Ed 61:e202117401

    CAS  Google Scholar 

  24. Feng M, Dauphin AL, Bouffier L, Zhang F, Wang Z, Sojic N (2021) Enhanced cathodic electrochemiluminescence of luminol on iron electrodes. Anal Chem 93:16425–16431

    CAS  PubMed  Google Scholar 

  25. Xiong J, Zhang S, Qin L, Shan W, Sun B, Shen J, Jiang H (2023) Ultrasensitive inner filter effect fluorescence sensing platform for alkaline phosphatase based on arginine surface-engineered gold nanoclusters. Sensor Actuat B-Chem 378:133177

    CAS  Google Scholar 

  26. Friganović T, Weitner T (2023) Reducing the inner filter effect in microplates by increasing absorbance? Linear fluorescence in highly concentrated fluorophore solutions in the presence of an added absorber. Anal Chem 95:13036–13045

    PubMed  PubMed Central  Google Scholar 

  27. Zhang Z, Jiang D, Song Q, Ding H, Jiang J, Shan X, Wang W, Shiigi H, Chen Z (2023) Novel inner filter effect-based near-infrared electrochemiluminescence sensor mediated by well-matched AgBr-nitrogen-doped Ti3C2 MXene and nonmetallic plasmon WO3•H2O. Biosens Bioelectron 238:115551

    CAS  PubMed  Google Scholar 

  28. Zhou Z, Shang Q, Shen Y, Zhang L, Zhang Y, Lv Y, Li Y, Liu S, Zhang Y (2016) Chemically modulated carbon nitride nanosheets for highly selective electrochemiluminescent detection of multiple metal-ions. Anal Chem 88:6004–6010

    CAS  PubMed  Google Scholar 

  29. Ma C, Wu W, Peng Y, Wang M, Chen G, Chen Z, Zhu J (2018) A spectral shift-based electrochemiluminescence sensor for hydrogen sulfide. Anal Chem 90:1334–1339

    CAS  PubMed  Google Scholar 

  30. Ma C, Cao Y, Gou X, Zhu J (2020) Recent progress in electrochemiluminescence sensing and imaging. Anal Chem 92:431–454

    CAS  PubMed  Google Scholar 

  31. Mo G, Qin D, Wu Y, Luo Z, Mo K, Deng B (2023) Dual-potential electrochemiluminescence cytosensor based on a metal-organic framework and ABEI-PEI-Au@AgNPs for the simultaneous determination of phosphatidylserine and epidermal growth factor receptors on an apoptotic cell surface. Microchim Acta 190:347

    CAS  Google Scholar 

  32. Han Q, Wang C, Li Z, Wu J, Liu P, Mo F, Fu Y (2020) Multifunctional zinc oxide promotes electrochemiluminescence of porphyrin aggregates for ultrasensitive detection of copper ion. Anal Chem 92:3324–3331

    CAS  PubMed  Google Scholar 

  33. He L, Jiang Z, Li W, Li C, Huang C, Li Y (2018) In situ synthesis of gold nanoparticles/metal-organic gels hybrids with excellent peroxidase-like activity for sensitive chemiluminescence detection of organophosphorus pesticides. ACS Appl Mater Interfaces 10:28868–28876

    CAS  PubMed  Google Scholar 

  34. Zhang Y, Cao Y, Mao C, Jiang D, Zhu W (2022) An iron(III)-based metal-organic gel-catalyzed dual electrochemiluminescence system for cytosensing and in situ evaluation of the VEGF165 subtype. Anal Chem 94:4095–4102

    CAS  PubMed  Google Scholar 

  35. Wang H, Chen B, Liu D (2021) Metal-organic frameworks and metal-organic gels for oxygen electrocatalysis: structural and compositional considerations. Adv Mater 33:2008023

    CAS  Google Scholar 

  36. Cui L, Zhao M, Li C, Wang Q, Luo X, Zhang C (2021) A host-guest interaction-based and metal-organic gel-based biosensor with aggregation-induced electrochemiluminescence enhancement for methyltransferase assay. Anal Chem 93:2974–2981

    CAS  PubMed  Google Scholar 

  37. Zhang W, Dynes J, Hu Y, Jiang P, Ma S (2019) Porous metal-metalloporphyrin gel as catalytic binding pocket for highly efficient synergistic catalysis. Nat Commun 10:1913

    PubMed  PubMed Central  Google Scholar 

  38. Zhang Y, Chen Y, Nie Y, Yang Z, Yuan R, Wang H, Chai Y (2022) Highly efficient aggregation-induced electrochemiluminescence of Al(III)-cbatpy metal-organic gels obtained by ultrarapid self-assembly for a biosensing application. Anal Chem 94:12196–12203

    CAS  PubMed  Google Scholar 

  39. Li Y, He L, Huang C, Li Y (2019) Silver-based metal-organic gels as novel coreactant for enhancing electrochemiluminescence and its biosensing potential. Biosens Bioelectron 134:29–35

    CAS  PubMed  Google Scholar 

  40. Wang X, Chen R, Hu J, Yuan W (2022) An adjustable amyloid-β oligomers aptasensor based on the synergistic effect of self-enhanced metal-organic gel luminophore and triple-helix DNA system. Int J Biol Macromol 222:794–802

    CAS  PubMed  Google Scholar 

  41. Xiao S, Zhen S, Huang C, Li Y (2021) Ultrasensitive ratiometric electrochemiluminescence for detecting atxA mRNA using luminol-encapsulated liposome as effectively amplified signal labels. Biosens Bioelectron 186:113263

    CAS  PubMed  Google Scholar 

  42. Song D, Zheng J, Myung NV, Xu J, Zhang M (2021) Sandwich-type electrochemical immunosensor for CEA detection using magnetic hollow Ni/C@SiO2 nanomatrix and boronic acid functionalized CPS@PANI@Au probe. Talanta 225:122006

    CAS  PubMed  Google Scholar 

  43. Zheng G, Hu S, Qin D, Nong C, Yang L, Deng B (2023) Aggregation-induced electrochemiluminescence enhancement of Ag-MOG for amyloid β 42 sensing. Anal Chim Acta 1281:341898

    CAS  Google Scholar 

  44. Yang J, Qin D, Wang N, Wu Y, Fang K, Deng B (2023) Aggregation-induced electrochemiluminescence based on a zinc-based metal–organic framework and a double quencher Au@UiO-66-NH2 for the sensitive detection of amyloid β 42 via resonance energy transfer. Anal Chem 95:7045–7052

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (22164004) and the Guangxi Science Foundation of China (2022GXNSFDA035069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biyang Deng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1301 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Xu, L., Wu, Y. et al. Novel immunosensor based on electrochemiluminescence inner filter effect and static quenching between fibrillary Ag-MOGs and SiO2@PANI@AuNPs for enabling the sensitive detection of neuron-specific enolase. Microchim Acta 191, 204 (2024). https://doi.org/10.1007/s00604-024-06294-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06294-4

Keywords

Navigation