Skip to main content
Log in

Cotton swabs wrapped with three-dimensional silver nanoflowers as SERS substrates for the determination of food colorant carmine on irregular surfaces

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A lightweight, portable, low-cost, and accessible cotton swab was employed as surface enhanced Raman spectroscopy (SERS) matrix template. The silver nanoflowers were in situ grown on the surface of cotton swabs to form three-dimensional Ag nanoflower@cotton swabs (AgNF@CS) SERS substrate with high-density and multi-level hot spots. The SERS performance of AgNFs@CS substrates with various reaction time was systematically studied. The optimal AgNF-120@CS SERS substrate exhibits superior detection sensitivity of 10−10 M for methylene blue, good signal reproducibility, high enhancement factor of 1.4 × 107, and excellent storage stability (over 30 days). Moreover, the AgNF-120@CS SERS substrate also exhibits prominent detection sensitivity of 10−8 M for food colorant of carmine. Besides, the portable AgNF-120@CS SERS substrate is also capable of detecting food colorant residues on irregular food surfaces.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Gukowsky JC, Xie T, Gao S, Qu Y, He L (2018) Rapid identification of artificial and natural food colorants with surface enhanced Raman spectroscopy. Food Control 92:267–275

    CAS  Google Scholar 

  2. Itoh T, Procházka M, Dong Z-C, Ji W, Yamamoto YS, Zhang Y (2023) Toward a new era of SERS and TERS at the nanometer scale: from fundamentals to innovative applications. Chem Rev 123(4):1552–1634

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Xue D, Dai X, Zhao J, Zhang J, Liu H, Liu K (2024) Therapeutic drug monitoring mediated by the cooperative chemical and electromagnetic effects of Ti3C2TX modified with Ag nanocubes. Biosen Bioelectron 245:115844

    CAS  Google Scholar 

  4. Li F, Mu X, Tang X, Song G, Sun H, Zha X (2023) Semiconductor SERS on colourful substrates with Fabry-Pérot cavities. Angew Chem Int Edit 135(12):e202218055

    Google Scholar 

  5. Schmidt MM, Farley EA, Engevik MA, Adelsman TN, Tuckmantel Bido A, Lemke ND (2023) High-speed spectral characterization of single-molecule SERS fluctuations. ACS Nano 17(7):6675–6686

    CAS  PubMed  Google Scholar 

  6. Kim D, Kim J, Henzie J, Ko Y, Lim H, Kwon G (2021) Mesoporous Au films assembled on flexible cellulose nanopaper as high-performance SERS substrates. Chem Eng J 419:129445

    CAS  Google Scholar 

  7. Zhang S, Jin K, Xu J, Ding L, Huang Y, Liu G (2024) Aramid nanofiber membrane decorated with monodispersed silver nanoparticles as robust and flexible SERS chips for trace detection of multiple toxic substances. Spectrochim Acta A 308:123720

    CAS  Google Scholar 

  8. Li X, Zhang T, Chen Z, Yu J, Cao A, Liu D (2022) Au polyhedron array with tunable crystal facets by PVP-assisted thermodynamic control and its sharp shape as well as high-energy exposed planes Co-boosted SERS activity. Small 18(4):2105045

    CAS  Google Scholar 

  9. Zhang T, Li X, Li C, Cai W, Li Y (2021) One-pot synthesis of ultrasmooth, precisely shaped gold nanospheres via surface self-polishing etching and regrowth. Chem Mater 33(7):2593–2603

    CAS  Google Scholar 

  10. Xing C, Liu D, Chen J, Fan Y, Zhou F, Kaur K (2021) Convective self-assembly of 2D nonclose-packed binary Au nanoparticle arrays with tunable optical properties. Chem Mater 33(1):310–319

    CAS  Google Scholar 

  11. Kumar S, Tokunaga K, Namura K, Fukuoka T, Suzuki M (2020) Experimental evidence of a twofold electromagnetic enhancement mechanism of surface-enhanced Raman scattering. J Phys Chem C 124(38):21215–21222

    CAS  Google Scholar 

  12. Botta R, Limwichean S, Limsuwan N, Moonlek C, Horprathum M, Eiamchai P (2022) An efficient and simple SERS approach for trace analysis of tetrahydrocannabinol and cannabinol and multi-cannabinoid detection. Spectrochim Acta A 281:121598

    CAS  Google Scholar 

  13. Botta R, Eiamchai P, Horprathum M, Limwichean S, Chananonnawathorn C, Patthanasettakul V (2018) Investigation of silver nanorods as reusable SERS-active substrates for trace level detection of 2-MIB volatile organic compound. Sensor Actuat B Chem 271:122–127

    CAS  Google Scholar 

  14. Botta R, Eiamchai P, Horprathum M, Limwichean S, Chananonnawathorn C, Patthanasettakul V (2020) 3D structured laser engraves decorated with gold nanoparticle SERS chips for paraquat herbicide detection in environments. Sensor Actuat B Chem 304:127327

    CAS  Google Scholar 

  15. Sajitha M, Abraham B, Nelliyil RB, Yoosaf K (2021) Chemically etched nanoporous copper and galvanically displaced silver nanoflowers for SERS sensing. ACS Appl Nano Mater 4(10):10038–10046

    CAS  Google Scholar 

  16. Nistico R, Rivolo P, Novara C, Giorgis F (2019) New branched flower-like Ag nanostructures for SERS analysis. Colloid Surface A 578:123600

    CAS  Google Scholar 

  17. Qiu H, Wang M, Jiang S, Zhang L, Yang Z, Li L (2017) Reliable molecular trace-detection based on flexible SERS substrate of graphene/Ag-nanoflowers/PMMA. Sensor Actuat B Chem 249:439–450

    CAS  Google Scholar 

  18. Cheng D, He M, Ran J, Cai G, Wu J, Wang X (2018) Depositing a flexible substrate of triangular silver nanoplates onto cotton fabrics for sensitive SERS detection. Sensor Actuat B Chem 270:508–517

    CAS  Google Scholar 

  19. Khatoon UT, Rao GN, Mantravadi KM, Oztekin Y (2018) Strategies to synthesize various nanostructures of silver and their applications–a review. RSC Adv 8(35):19739–19753

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang S, Xu J, Liu Z, Huang Y, Fu R, Jiang S (2022) Facile and scalable preparation of solution-processed succulent-like silver nanoflowers for 3D flexible nanocellulose-based SERS sensors. Surf Interfaces 34:102391

    CAS  Google Scholar 

  21. Wang D, Wang F, Yang H (2018) Robust, flexible, sticky and high sensitive SERS membrane for rapid detection applications. Sensor Actuat B Chem 274:676–681

    CAS  Google Scholar 

  22. Zhang D, Pu H, Huang L, Sun DW (2021) Advances in flexible surface-enhanced Raman scattering (SERS) substrates for nondestructive food detection: Fundamentals and recent applications. Trends Food Sci Tech 109:690–701

    CAS  Google Scholar 

  23. Li Z, Huang X, Lu G (2020) Recent developments of flexible and transparent SERS substrates. J Mater Chem C 8(12):3956–3969

    CAS  Google Scholar 

  24. Xia D, Jiang P, Cai Z, Zhou R, Tu B, Gao N (2022) Ag nanocubes monolayer-modified PDMS as flexible SERS substrates for pesticides sensing. Microchim Acta 189(6):232

    CAS  Google Scholar 

  25. Zhang S, Xu J, Huang Y, Liu Z, Jiang S (2022) Monodisperse Ag nanoparticle-decorated bacterial nanocellulose as flexible surface-enhanced Raman scattering sensors for trace detection of toxic thiram. ACS Appl Nano Mater 5(12):18519–18530

    CAS  Google Scholar 

  26. Song X, Zhang Y, Ren X, Zhang X, Tang D, Wu J (2023) Fabrication of flexible multidimensional CC/MoS2@Ag@PDMS hybrids as stable and self-cleaning SERS substrate for sensitive and quantitative point-of-care testing. Sensors Actuat B Chem 394:134439

    CAS  Google Scholar 

  27. Sunil N, Unnathpadi R, Pullithadathil B (2023) Label-free SERS salivary biosensor based on Ni@Ag core–shell nanoparticles anchored on carbon nanofibers for prediagnosis of lung cancer. ACS Appl Nano Mater 6(13):11334–11350

    CAS  Google Scholar 

  28. Kumar S, Goel P, Singh JP (2017) Flexible and robust SERS active substrates for conformal rapid detection of pesticide residues from fruits. Sensors Actuat B Chem 241:577–583

    CAS  Google Scholar 

  29. Guo Z, Zheng Y, Yin L, Xue S, Ma L, Zhou R (2024) Flexible Au@AgNRs/MAA/PDMS-based SERS sensor coupled with intelligent algorithms for in-situ detection of thiram on apple. Sensors Actuat B Chem 404:135303

    CAS  Google Scholar 

  30. Wei X, Song W, Fan Y, Sun Y, Li Z, Chen S (2024) A SERS aptasensor based on a flexible substrate for interference-free detection of carbendazim in apple. Food Chem 431:137120

    CAS  PubMed  Google Scholar 

  31. Sang Y, Chen X, Zhang L, Li D, Xu H (2021) Electrospun polymeric nanofiber decorated with sea urchin-like gold nanoparticles as an efficient and stable SERS platform. J Colloid Interface Sci 590:125–133

    CAS  PubMed  Google Scholar 

  32. Gong Z, Du H, Cheng F, Wang C, Wang C, Fan M (2014) Fabrication of SERS swab for direct detection of trace explosives in fingerprints. ACS Appl Mater Interfaces 6(24):21931–21937

    CAS  PubMed  Google Scholar 

  33. Qu LL, Geng YY, Bao ZN, Riaz S, Li H (2016) Silver nanoparticles on cotton swabs for improved surface-enhanced Raman scattering, and its application to the detection of carbaryl. Microchim Acta 183:1307–1313

    CAS  Google Scholar 

  34. Tian L, Jiang Q, Liu KK, Luan J, Naik RR, Singamaneni S (2016) Bacterial nanocellulose-based flexible surface enhanced Raman scattering substrate. Adv Mater Interfaces 3(15):1600214

    Google Scholar 

  35. Huang WC, Cheng KF, Shyu JY (2022) Flexible SERS substrate of silver nanoparticles on cotton swabs for rapid in situ detection of melamine. Nanoscale Adv 4(4):1164–1172

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pandi N, Sonawane SH, Anand Kishore K (2021) Synthesis of cellulose nanocrystals (CNCs) from cotton using ultrasound-assisted acid hydrolysis. Ultrason Sonochem 70:105353

    CAS  PubMed  Google Scholar 

  37. Abol-Fotouh D, Hassan MA, Shokry H, Roig A, Azab MS, Kashyout AE-HB (2020) Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Sci Rep 10(1):1–14

    Google Scholar 

  38. Liu C, Yang X, Yuan H, Zhou Z, Xiao D (2007) Preparation of silver nanoparticle and its application to the determination of ct-DNA. Sensors 7(5):708–718

    CAS  PubMed Central  Google Scholar 

  39. Ruby A, Mehata MS (2022) Surface plasmon resonance allied applications of silver nanoflowers synthesized from Breynia vitis-idaea leaf extract. Dalton T 51(7):2726–2736

    CAS  Google Scholar 

  40. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Accounts Chem Res 34(4):257–264

    CAS  Google Scholar 

  41. Xiao GN, Man SQ (2007) Surface-enhanced Raman scattering of methylene blue adsorbed on cap-shaped silver nanoparticles. Chem Phys Lett 447(4):305–309

    CAS  Google Scholar 

  42. Santhoshkumar S, Murugan E (2021) Rationally designed SERS AgNPs/GO/g-CN nanohybrids to detect methylene blue and Hg2+ ions in aqueous solution. Appl Surf Sci 553:149544

    CAS  Google Scholar 

  43. Li Y, Li P, Chen Y, Wu Y, Wei J (2023) Interfacial deposition of Ag nanozyme on metal-polyphenol nanosphere for SERS detection of cellular glutathione. Biosen Bioelectron 228:115200

    CAS  Google Scholar 

  44. Kong L, Huang M, Chen J, Lin M (2020) Fabrication of sensitive silver-decorated cotton swabs for SERS quantitative detection of mixed pesticide residues in bitter gourds. New J Chem 44(29):12779–12784

    Google Scholar 

  45. Wang Y, Wang M, Sun X, Shi G, Zhang J, Ma W (2018) Grating-like SERS substrate with tunable gaps based on nanorough Ag nanoislands/moth wing scale arrays for quantitative detection of cypermethrin. Opt Exp 26(17):22168–22181

    CAS  Google Scholar 

  46. Feng C, Wang X, Yang J, Xi S, Jia M, Shen J (2022) Silver nanoparticle-decorated chitosan aerogels as three-dimensional porous surface-enhanced Raman scattering substrates for ultrasensitive detection. ACS Appl Nano Mater 5(4):5398–5406

    CAS  Google Scholar 

  47. Wu YX, Liang P, Dong QM, Bai Y, Yu Z, Huang J (2017) Design of a silver nanoparticle for sensitive surface enhanced Raman spectroscopy detection of carmine dye. Food Chem 237:974–980

    CAS  PubMed  Google Scholar 

Download references

Funding

Prof. Shouxiang Jiang: Hong Kong Innovation Technology Funding (No. PRP/104/20TI). Prof. Sihang Zhang: Start-up Fund for High-level Talents of Hainan University (KYQD(ZR)23098), Hainan Provincial Natural Science Foundation of China (224MS003), Innovation and Technology Commission (ITC) of the Hong Kong SAR Government for “Research Talent Hub” Postdoctoral Fellowship Scheme (RTH-ITF, No. PiH/253/21). Prof. Long Wu: Key Laboratory of Tropical Fruit and Vegetable Quality and Safety for State Market Supervision (ZX-2023001).

Author information

Authors and Affiliations

Authors

Contributions

SZ: conceptualization, methodology, investigation, writing—original draft, writing—review and editing, visualization. KJ: methodology, investigation. JX and JX: visualization, investigation. LD: methodology, investigation. LW: conceptualization, supervision and funding acquisition. XL: conceptualization, supervision and funding acquisition. ZD: writing—review and editing, supervision. SJ: writing—review and editing, supervision, funding acquisition.

Corresponding authors

Correspondence to Sihang Zhang, Zoufei Du or Shouxiang Jiang.

Ethics declarations

Ethics approval

This research did not involve human or animal samples.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1783 KB)

Supplementary file2 (MOV 575 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Jin, K., Xu, J. et al. Cotton swabs wrapped with three-dimensional silver nanoflowers as SERS substrates for the determination of food colorant carmine on irregular surfaces. Microchim Acta 191, 222 (2024). https://doi.org/10.1007/s00604-024-06292-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06292-6

Keywords

Navigation