Skip to main content

Advertisement

Log in

Determination of pepsin in human saliva using pepsin-susceptible peptide reporter and colorimetric dipstick assay: a prospective, cross-sectional study

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A simple and effective pepsin detection assay is reported based on a pepsin-susceptible peptide (PSP) reporter degradation strategy. PSP, which can be specifically cleaved by pepsin, was modified with fluorescein isothiocyanate (FITC) and biotin at the N- and C-terminals to be used as a reporter for colorimetric detection of dipsticks. A universal lateral flow dipstick consisting of a streptavidin test line for biotin binding and a sample pad immobilized with a gold-labeled polyclonal (rabbit) anti-FITC antibody was used to verify PSP-based pepsin detection. When the PSP reporter reacts with pepsin in a tube, it cleaves into two fragments, and the cleaved fragments do not display any color on the test line. Therefore, the higher the concentration of pepsin is, the greater is the decrease in test line intensity (IT−line) and the higher is the control line intensity (IC−line). First, the PSP cleavage and dipstick assay conditions for pepsin detection was optimized. The ratio of color intensity (IT−line/IC−line) of PSP-based dipstick assay showed a linear relationship with log concentration of pepsin ranging between 4 and 500 ng/mL (R2 = 0.98, n = 6), with a limit of detection of 1.4 ng/mL. It also exhibited high specificity and good reproducibility. Finally, pepsin levels were quantified in saliva samples from healthy controls (n = 34) and patients with laryngopharyngeal reflux (LPR, n = 61). Salivary pepsin levels were higher in patients with LPR than in healthy controls. The salivary pepsin levels correlated with those measured using a conventional enzyme-linked immunosorbent assay kit. Therefore, this PSP-based dipstick assay is a convenient tool for assessing salivary pepsin levels.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Divakaran S, Rajendran S, Thomas RM, Jacob J, Kurien M (2021) Laryngopharyngeal rReflux: symptoms, signs, and Presence of Pepsin in Saliva - A Reliable Diagnostic Triad. Int Arch Otorhinolaryngol 25:e273–e278. https://doi.org/10.1055/s-0040-1709987

    Article  PubMed  Google Scholar 

  2. Wang L, Liu X, Liu YL, Zeng FF, Wu T, Yang CL, Shen HY, Li XP (2010) Correlation of pepsin measured laryngopharyngeal reflux disease with symptoms and signs. Otolaryngol Head Neck Surg 143:765–771. https://doi.org/10.1016/j.otohns.2010.08.018

    Article  PubMed  Google Scholar 

  3. Mesallam TA (2016) Oropharyngeal 24-Hour pH monitoring in children with airway-related problems. Clin Exp Otorhinolaryngol 9:168–172. https://doi.org/10.21053/ceo.2015.00409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Reimer C, Bytzer P (2008) Management of laryngopharyngeal reflux with proton pump inhibitors. Ther Clin Risk Manag 4:225–233. https://doi.org/10.2147/tcrm.s6862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee JS, Jung AR, Park JM, Park MJ, Lee YC, Eun YG (2018) Comparison of characteristics according to Reflux Type in patients with Laryngopharyngeal Reflux. Clin Exp Otorhinolaryngol 11:141–145. https://doi.org/10.21053/ceo.2017.00577

    Article  PubMed  Google Scholar 

  6. Lee YJ, Kwon J, Shin S, Eun YG, Shin JH, Lee GJ (2020) Optimization of Saliva Collection and Immunochromatographic Detection of Salivary Pepsin for Point-of-Care Testing of Laryngopharyngeal Reflux. Sensors 20:325. https://doi.org/10.3390/s20010325

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Campagnolo AM, Priston J, Thoen RH, Medeiros T, Assunção AR (2014) Laryngopharyngeal reflux: diagnosis, treatment, and latest research. Int Arch Otorhinolaryngol 18:184–191. https://doi.org/10.1055/s-0033-1352504

    Article  PubMed  Google Scholar 

  8. Bulmer DM, Ali MS, Brownlee IA, Dettmar PW, Pearson JP (2010) Laryngeal mucosa: its susceptibility to damage by acid and pepsin. Laryngoscope 120:777–782. https://doi.org/10.1002/lary.20665

    Article  PubMed  Google Scholar 

  9. Ocak E, Kubat G, Yorulmaz Í (2015) Immunoserologic pepsin detection in the saliva as a non-invasive rapid diagnostic test for laryngopharyngeal reflux. Balkan Med J 32:46–50. https://doi.org/10.5152/balkanmedj.2015.15824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Na SY, Kwon OE, Lee YC, Eun YG (2016) Optimal timing of saliva collection to detect pepsin in patients. Laryngoscope 126:2270–2273. https://doi.org/10.1002/lary.26018

    Article  Google Scholar 

  11. Raja Nhari RMH, Muhammad Zailani AN, Khairil Mokhtar NF, Hanish I (2020) Detection of porcine pepsin in model cheese using polyclonal antibody-based ELISA. Food Addit Contaminants: Part A 37:561–567. https://doi.org/10.1080/19440049.2020.1717645

    Article  CAS  Google Scholar 

  12. Lee D, Lee YJ, Eun YG, Lee GJ (2018) Label-free detection of salivary pepsin using gold Nanoparticle/Polypyrrole Nanocoral Modified screen-printed Electrode. Sensors 18:1685. https://doi.org/10.3390/s18061685

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zheng Z, Geng WC, Li HB, Guo DS (2021) Sensitive fluorescence detection of saliva pepsin by a supramolecular tandem assay enables the diagnosis of gastroesophageal reflux disease. Supramol Chem 33:80–87. https://doi.org/10.1080/10610278.2020.1857762

    Article  CAS  Google Scholar 

  14. Fortunato JE, D’Agostino RB Jr., Lively MO (2017) Pepsin in saliva as a biomarker for oropharyngeal reflux compared with 24-h esophageal impedance/pH monitoring in pediatric patients. Neurogastroenterol Motil 29:e12936. https://doi.org/10.1111/nmo.12936

    Article  CAS  Google Scholar 

  15. Salelles L, Floury J, Le Feunteun S (2021) Pepsin activity as a function of pH and digestion time on caseins and egg white proteins under static in vitro conditions. Food Funct 12:12468–12478. https://doi.org/10.1039/d1fo02453a

    Article  CAS  PubMed  Google Scholar 

  16. Li W, Gao Z, Su R, Qi W, Wang L, He Z (2014) Scissor-based fluorescent detection of pepsin using lysozyme-stabilized au nanoclusters. Anal Methods 6:6789–6795. https://doi.org/10.1039/C4AY00983E

    Article  CAS  Google Scholar 

  17. Jiang Q, Chen Z, Huang Y, Gao Q, Luo C, Mehdi M, Xu Y, Li H, Sun S (2023) A bovine serum albumin and squaraine dye assembly fluorescent probe for pepsin detection. Microchem J 186:108361. https://doi.org/10.1016/j.microc.2022.108361

    Article  CAS  Google Scholar 

  18. Wang R, Edrington TC, Storrs SB, Crowley KS, Ward JM, Lee TC, Liu ZL, Li B, Glenn KC (2017) Analyzing pepsin degradation assay conditions used for allergenicity assessments to ensure that pepsin susceptible and pepsin resistant dietary proteins are distinguishable. PLoS ONE 12:e0171926. https://doi.org/10.1371/journal.pone.0171926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee GJ, Lee YJ (2020) Peptide cleaved specifically by pepsin and kit for diagnosing laryngopharyngeal reflux comprising the same. KR Pat 10–2105157

  20. Carpino LA, Han GY (1972) The 9-fluorenylmethoxycarbonyl amino-protecting group. J Org Chem 37:3404–3409. https://doi.org/10.1021/jo00795a005

    Article  CAS  Google Scholar 

  21. Jung AR, Kwon OE, Park JM, Dong SH, Jung SY, Lee YC, Eun YG (2019) Association between Pepsin in the saliva and the subjective symptoms in patients with Laryngopharyngeal Reflux. J Voice 33:150–154. https://doi.org/10.1016/j.jvoice.2017.10.015

    Article  PubMed  Google Scholar 

  22. Hamuro Y, Coales SJ, Molnar KS, Tuske SJ, Morrow JA (2008) Specificity of immobilized porcine pepsin in H/D exchange compatible conditions. Rapid Commun Mass Spectrom 22:1041–1046. https://doi.org/10.1016/j.bbapap.2012.10.003

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Ahn J, Cao MJ, Yu YQ, Engen JR (2013) Accessing the reproducibility and specificity of Pepsin and other Aspartic proteases. Biochim Biophys Acta 1834:1222–1229. https://doi.org/10.1016/j.bbapap.2012.10.003

    Article  CAS  PubMed  Google Scholar 

  24. Ross GMS, Filippini D, Nielen MWF, Salentijn GIJ (2020) Unraveling the Hook Effect: a Comprehensive Study of High Antigen Concentration effects in Sandwich lateral Flow immunoassays. Anal Chem 92:15587–15595. https://doi.org/10.1021/acs.analchem.0c03740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Taverniers I, De Loose M, Van Bockstaele E (2004) Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. Trac-Trends Anal Chem 23:535–552. https://doi.org/10.1016/j.trac.2004.04.001

    Article  CAS  Google Scholar 

  26. Hu W, Ding L, Cao J, Liu L, Wei Y, Fang Y (2015) Protein binding-Induced surfactant aggregation variation: a New Strategy of developing fluorescent aqueous sensor for proteins. ACS Appl Mater Interfaces 7:4728–4736. https://doi.org/10.1021/am508421n

    Article  CAS  PubMed  Google Scholar 

  27. Chen L, Zhang W, Jiao P, Zhao M (2009) Fluorescence labeling and determination of Pepsin with CdSe Quantum dots. Chin J Chem 27:2368–2372. https://doi.org/10.1002/cjoc.201090010

    Article  CAS  Google Scholar 

  28. Zhou J, Chen X, Wei Y, Lu R, Wei Z, Huang K, Luo H, Zhang J, Zheng C (2023) Portable and Rapid Fluorescence Turn-On Detection of Total Pepsin in Saliva based on strong electrostatic interactions. Anal Chem 95:18303–18308. https://doi.org/10.1021/acs.analchem.3c04723

    Article  CAS  PubMed  Google Scholar 

  29. Kang X, Wang R, Jiang M, Li E, Li Y, Wang T, Ren Z (2023) A label-free biosensor for pepsin detection based on graphene oxide functionalized micro-tapered long period fiber grating. Sens Actuator Rep 5:100139. https://doi.org/10.1016/j.snr.2023.100139

    Article  Google Scholar 

  30. Samuels TL, Johnston N (2010) Pepsin as a marker of extraesophageal reflux. Ann Otol Rhinol Laryngol 119:203–208. https://doi.org/10.1177/000348941011900310

    Article  PubMed  Google Scholar 

  31. Guo Z, Jiang J, Wu H, Zhu J, Zhang S, Zhang C (2021) Salivary peptest for laryngopharyngeal reflux and gastroesophageal reflux disease; a systemic review and meta-analysis. Medicine 100:32. https://doi.org/10.1097/MD.0000000000026756

    Article  CAS  Google Scholar 

  32. Liu Y, Zhan L, Qin Z, Sackrison J, Bischof JC (2021) Ultrasensitive and highly specific lateral Flow assays for point-of-care diagnosis. ACS Nano 15:3593–3611. https://doi.org/10.1021/acsnano.0c10035

    Article  CAS  PubMed  Google Scholar 

  33. Yee EH, Lathwal S, Shah PP, Sikes HD (2017) Detection of biomarkers of periodontal disease in human saliva using stabilized, vertical flow immunoassays. ACS Sens 2:1589–1593. https://doi.org/10.1021/acssensors.7b00745

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Korea (grant number: HI18C1039), and a National Research Foundation grant funded by the Korean government (No. NRF-2021R1A2C1093825).

Author contributions:

Author information

Authors and Affiliations

Authors

Contributions

YJL: Methodology, Validation, Investigation, Formal analysis. JKN: Methodology, Validation, Formal analysis, Visualization, Writing - original draft preparation. SRW: Methodology, Validation, Formal analysis. S-WK: Methodology, Validation. Y-GE: Resources, Validation, Writing - review and editing, Supervision, Funding acquisition. G-J L: Conceptualization, Methodology, Visualization, Writing - original draft preparation, Writing - review and editing, Supervision, Project administration, Funding acquisition.

Corresponding author

Correspondence to Gi-Ja Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y.J., Noh, J.K., Woo, S.R. et al. Determination of pepsin in human saliva using pepsin-susceptible peptide reporter and colorimetric dipstick assay: a prospective, cross-sectional study. Microchim Acta 191, 117 (2024). https://doi.org/10.1007/s00604-024-06192-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06192-9

Keywords

Navigation