Skip to main content
Log in

A new immunosensing platform based on conjugated Poly(ThidEp-co-EDOT) copolymer for resistin detection, a new obesity biomarker

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The design of a novel electrochemical impedimetric biosensor for label-free analysis of resistin, a biomarker for obesity, is reported. For the fabrication of the immunosensor, a novel approach composed of electrochemical copolymerization of double epoxy groups-substituted thiophene (ThidEp) and 3,4-Ethylenedioxythiophene (EDOT) monomers was utilized. Anti-resistin antibodies were covalently attached to the copolymer-coated electrode. The capture of resistin antigens by anti-resistin antibodies caused significant variations in charge transfer resistance (Rct) because of the immunoreactions between these proteins. Under optimum experimental variables, the changes in impedance signals were employed for the determination of resistin antigen concentration, and the prepared immunosensor based on conjugated copolymer illustrated a wide linear range between 0.0125 and 22.5 pg/mL, a low detection limit (LOD) of 3.71 fg/mL, and a good sensitivity of 1.22 kΩ pg−1mL cm2. The excellent analytical performance of the resistin immunosensor in terms of selectivity, sensitivity, repeatability, reproducibility, storage stability, and low detection limit might be attributed to the conductive copolymer film layer generation on the disposable indium tin oxide (ITO) platform. The capability of this system for the determination of resistin in human serum and saliva samples was also tested. The immunosensor results were in accordance with the enzyme-linked immunosorbent assay (ELISA) results. The matrix effects of human serum and saliva were also investigated, and the proposed immunosensor displayed good recovery ranging from 95.91 to 106.25%. The engineered immunosensor could open new avenues for obesity monitoring.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tinahones FJ, Leticia C, Maria DM et al (2012) Obesity-associated insulin resistance is correlated to adipose tissue vascular endothelial growth factors and metalloproteinase levels. BMC Phys 12:1–8. https://doi.org/10.1186/1472-6793-12-4

    Article  CAS  Google Scholar 

  2. Kim S, Barry MP (2006) Commentary: Understanding the epidemiology of overweight and obesity a real global public health concern Int. J. Epidemiol 35:60–67. https://doi.org/10.1093/ije/dyi255

    Article  Google Scholar 

  3. Frank BH (2013) Resolved: there is sufficient scientific evidence that decreasing sugar-sweetened beverage consumption will reduce the prevalence of obesity and obesity-related diseases. Obes. Rev 14:606–19. https://doi.org/10.1111/obr.12040

    Article  CAS  Google Scholar 

  4. Matthew AS, Wieland K (2015) Childhood obesity: current and novel approaches Best Pract. Res. Clin. Endocrinol. Metab 29:327–38. https://doi.org/10.1016/j.beem.2015.04.003

    Article  Google Scholar 

  5. Nimptsch K, Stefan K, Tobias P (2019) Diagnosis of obesity and use of obesity biomarkers in science and clinical medicine. Metabolism 92:61–70. https://doi.org/10.1016/j.metabol.2018.12.006

    Article  CAS  PubMed  Google Scholar 

  6. Inci U, Mustafa KS (2022) A direct and simple immobilization route for immunosensors by CNBr activation for covalent attachment of anti-leptin: obesity diagnosis point of view. Biotech 12(1):33. https://doi.org/10.1007/s13205-021-03096-w

    Article  Google Scholar 

  7. Tamanna I et al (2022) Detection of leptin using electrocatalyst mediated impedimetric sensing. ACS Biomater. Sci. Eng 9(5):2170–2180. https://doi.org/10.1021/acsbiomaterials.2c00642

    Article  CAS  Google Scholar 

  8. Aleksandrova K, Dariush M, Tobias P (2018) Addressing the perfect storm: biomarkers in obesity and pathophysiology of cardiometabolic risk Clin. Chem 64:142–53. https://doi.org/10.1373/clinchem.2017.275172

    Article  CAS  Google Scholar 

  9. Irena M et al (2012) Measurement of salivary resistin, visfatin and adiponectin levels. Peptides 33(1):120–124. https://doi.org/10.1016/j.peptides.2011.11.007

    Article  CAS  Google Scholar 

  10. Katharina N, Tobias P, (2016) Obesity biomarkers, metabolism and risk of cancer: an epidemiological perspective Obesity and Cancer 199-217. https://doi.org/10.1007/978-3-319-42542-9_11

  11. Hiroshi S, Sei M, Natsuko K et al (2017) Resistin upregulates chemokine production by fibroblast-like synoviocytes from patients with rheumatoid arthritis Arthritis Res. Ther 19:1–10. https://doi.org/10.1186/s13075-017-1472-0

    Article  CAS  Google Scholar 

  12. Na W, Gaowa E, Yan D et al (2021) Correlation of serum resistin level and other metabolic hormones and immune function in neonatal umbilical cord blood. Medicine 100:11. https://doi.org/10.1097/MD.0000000000025195

    Article  CAS  Google Scholar 

  13. Murat Y, Neslihan B, Hüseyin D et al (2009) Serum resistin and adiponectin levels in women with polycystic ovary syndrome. Gynecol. Endocrinol 25(4):246–252. https://doi.org/10.1080/09513590802653833

    Article  CAS  Google Scholar 

  14. Israel H et al (2005) The levels of leptin, adiponectin, and resistin in normal weight, overweight, and obese pregnant women with and without preeclampsia. Am. J. Obstet. Gynecol 193(3):979–983. https://doi.org/10.1016/j.ajog.2005.06.041

    Article  CAS  Google Scholar 

  15. John NF, Sean CB, Shabha HM et al (2003) Resistin release by human adipose tissue explants in primary culture. Biochem. Biophys. Res. Commun 300(3):674–678. https://doi.org/10.1016/S0006-291X(02)02864-4

    Article  Google Scholar 

  16. Aya F, Hiroshi O, Kiyoe O et al (2004) Enzyme-linked immunosorbent assay for circulating human resistin: resistin concentrations in normal subjects and patients with type 2 diabetes. Clinica Chimica Acta 339(1–2):57–63. https://doi.org/10.1016/j.cccn.2003.09.009

    Article  CAS  Google Scholar 

  17. Elif BA, Muhammet A, Mustafa KS (2023) A novel electrochemical impedance immunosensor for the quantification of CYFRA 21–1 in human serum. Microchim. Acta 190(6):235. https://doi.org/10.1007/s00604-023-05813-z

    Article  CAS  Google Scholar 

  18. Elif B A, Muhammet A, Mustafa K S (2023) A label-free electrochemical biosensor for highly sensitive detection of GM2A based on gold nanoparticles/conducting amino-functionalized thiophene polymer layer. Sens. Actuators, B 392:134025. https://doi.org/10.1016/j.snb.2023.134025

  19. Elif BA, Muhammet A, Mustafa KS (2021) Ultrasensitive and selective impedimetric determination of prostate specific membrane antigen based on di-succinimide functionalized polythiophene covered cost-effective indium tin oxide. Macromol. Biosci 21(10):2100173. https://doi.org/10.1002/mabi.202100173

    Article  CAS  Google Scholar 

  20. Pan Z, Tingting S, Shengzhong R et al (2019) A sensitive amperometric AChE-biosensor for organophosphate pesticides detection based on conjugated polymer and Ag-rGO-NH2 nanocomposite’. Bioelectrochemistry 127:163. https://doi.org/10.1016/j.bioelechem.2019.02.003

    Article  CAS  PubMed  Google Scholar 

  21. Parastoo V, Mohammed Z, Johan B, et al (2022) A review on conjugated polymer-based electronic tongues Anal. Chim. Acta 340114. https://doi.org/10.1016/j.aca.2022.340114

  22. Fernando RRT, Luis F (2008) Applications of polymers for biomolecule immobilization in electrochemical biosensors. Mater. Sci. Eng. C 28:1530–43. https://doi.org/10.1016/j.msec.2008.04.010

    Article  CAS  Google Scholar 

  23. Noemi R (2009) New directions in medical biosensors employing poly (3, 4-ethylenedioxy thiophene) derivative-based electrodes. Anal. Bioanal. Chem 395:637–45. https://doi.org/10.1007/s00216-009-2981-8

    Article  CAS  Google Scholar 

  24. Seetharamaiah N, Seetharamaiah N, Jakkid S et al (2014) Development of a simple bioelectrode for the electrochemical detection of hydrogen peroxide using Pichia pastoris catalase immobilized on gold nanoparticle nanotubes and polythiophene hybrid. Analyst 139:5800–12. https://doi.org/10.1039/C4AN01262C

    Article  CAS  Google Scholar 

  25. Hanaa HA, Aisha AG, Mahmoud AH (2021) Polythiophene and its derivatives–based nanocomposites in electrochemical sensing: a mini review Mater. Today Commun 26

    Google Scholar 

  26. Yu L, Anthony PFT, Maojun Z, Wing CM (2018) Processable enzyme-hybrid conductive polymer composites for electrochemical biosensing. Biosens. Bioelectron 100:374–81. https://doi.org/10.1016/j.bios.2017.09.021

    Article  CAS  Google Scholar 

  27. Ying Z (2012) Electrochemical synthesis and characterization of a novel thiazole-based copolymer and its application in biosensor. Electrochim. Acta 59:256–263. https://doi.org/10.1016/j.electacta.2011.10.061

    Article  CAS  Google Scholar 

  28. Cheng-Yuan L, Peter F, John WB, Z, et al (2017) A urea potentiometric biosensor based on a thiophene copolymer. Biosensors 7(1):13. https://doi.org/10.3390/bios7010013

    Article  CAS  Google Scholar 

  29. Tugce YT, Tugba S, Metin A et al (2017) Enhancing biosensor properties of conducting polymers via copolymerization: synthesis of EDOT-substituted bis (2-pyridylimino) isoindolato-palladium complex and electrochemical sensing of glucose by its copolymerized film. Biosens. Bioelectron 87:81–88. https://doi.org/10.1016/j.bios.2016.08.020

    Article  CAS  Google Scholar 

  30. Nengqin J, Qiong L, Zhiyong W et al (2009) A hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin incorporated in PEO–PPO–PEO triblock copolymer film. Sens Actuators, B 137(1):230–234. https://doi.org/10.1016/j.snb.2008.10.011

    Article  CAS  Google Scholar 

  31. Rongli Z, Can J, Xiaoxia F et al (2017) A gold electrode modified with a nanoparticulate film composed of a conducting copolymer for ultrasensitive voltammetric sensing of hydrogen peroxide. Microchim. Acta 185:1–9. https://doi.org/10.1007/s00604-017-2564-x

    Article  CAS  Google Scholar 

  32. Saman S, Rahul S, Amit LS et al (2005) Development of a lactate biosensor based on conducting copolymer bound lactate oxidase. Sens Actuators, B 107(2):768–772. https://doi.org/10.1016/j.snb.2004.12.016

    Article  CAS  Google Scholar 

  33. Elif BA, Muhammet A, Mustafa KS (2021) A novel electrochemical immunosensor based on acetylene black/epoxy-substituted-polypyrrole polymer composite for the highly sensitive and selective detection of interleukin 6 Talanta, 222:121596. https://doi.org/10.1016/j.talanta.2020.121596

  34. Pratima RS, Suman S, Nirmal P et al (2007) Application of conducting poly (aniline-co-pyrrole) film to cholesterol biosensor. J. Appl. Polym. Sci 105:3211–19. https://doi.org/10.1002/app.26198

    Article  CAS  Google Scholar 

  35. Qiao T, Yan CY, Min ZR et al (2009) A thermally remendable epoxy resin. J Mater Chem 19:1289–96. https://doi.org/10.1039/B811938D

    Article  Google Scholar 

  36. Elif B A, Muhammet A, Mustafa K S, (2022) Sezgintürk, Selective and ultrasensitive electrochemical immunosensing of NSE cancer biomarker in human serum using epoxy-substituted poly (pyrrole) polymer modified disposable ITO electrode. Sens. Actuators, B 306:127613. https://doi.org/10.1016/j.snb.2019.127613

  37. Elif BA, Muhammet A, Mustafa KS (2022) Determination of calreticulin using Fe3O4@ AuNPs core-shell functionalized with PT(COOH)2 polymer modified electrode: a new platform for the impedimetric biosensing of cancer biomarkers. Sens. Actuators, B 367:132099. https://doi.org/10.1016/j.snb.2022.132099

    Article  CAS  Google Scholar 

  38. Emma GL, Kenneth DS, Thomas CD et al (2016) Analysis of PEDOT: PSS films after sulfuric acid treatment on silicon and fused silica using FT-IR and UV-VIS MRS. Advances 1:465. https://doi.org/10.1557/adv.2016.177

    Article  CAS  Google Scholar 

  39. Pojjawan C, Anuvat S (2013) Effect of transition metal ion-exchanged into the zeolite Y on electrical conductivity and response of PEDOT-PSS/MY composites toward SO2. Adv. Polym. Technol 32:21367. https://doi.org/10.1002/adv.21367

    Article  CAS  Google Scholar 

  40. Chakrit S, Chanpen K, Anurat W et al (2012) Inkjet-printed graphene-PEDOT: PSS modified screen printed carbon electrode for biochemical sensing. J. Mater. Chem 22:5478–85. https://doi.org/10.1039/C2JM14005E

    Article  Google Scholar 

  41. Tze SP, Patthara K, Sunil KA et al (2013) Detection of tumor necrosis factor (TNF-α) in cell culture medium with label free electrochemical impedance spectroscopy Sens. Actuators, B 181:494–500. https://doi.org/10.1016/j.snb.2013.02.019

    Article  CAS  Google Scholar 

  42. Hend SM, Rabeay YH, Ashok M (2021) Electrochemical impedance spectroscopy (EIS): principles, construction, and biosensing applications Sensors 21:6578. https://doi.org/10.3390/s21196578

  43. Anqing A, Yaping D, Li L, et al (2019) A novel electrochemical enzyme biosensor for detection of 17β-estradiol by mediated electron-transfer system Talanta 192:478-85. https://doi.org/10.1016/j.talanta.2018.09.018

  44. Audrey S, Loïc JB, Béatrice DL (2012) Immobilization strategies to develop enzymatic biosensors. Biotechnol. Adv 30:489–511. https://doi.org/10.1016/j.biotechadv.2011.09.003

    Article  CAS  Google Scholar 

  45. Zeynep A, Wellington MF, Ibtisam ET (2014) Cardiovascular disease detection using bio-sensing techniques. Talanta 128:177–86. https://doi.org/10.1016/j.talanta.2014.04.060

    Article  CAS  Google Scholar 

  46. Jack AG, Jo VR, Pa M (2015) Biosensor regeneration: a review of common techniques and outcomes. Langmuir 31(23):6267–6276. https://doi.org/10.1021/la503533g

    Article  CAS  Google Scholar 

  47. Saumya j, Vijay D P, Andreas M, et al (2018) Regenerative, highly-sensitive, non-enzymatic dopamine sensor and impact of different buffer systems in dopamine sensing. Biosensors 8(1):9. https://doi.org/10.3390/bios8010009

    Article  CAS  Google Scholar 

  48. Carlo DSR, Hideko Y, Mira J et al (2006) Label-free DNA detection based on modified conducting polypyrrole films at microelectrodes. Anal Chem 78(4):139–1145. https://doi.org/10.1021/ac051478u

    Article  CAS  Google Scholar 

  49. Elba MG, Ana C, Juan JM et al (2007) Optical immunosensor for fast and sensitive detection of DDT and related compounds in river water samples. Biosens Bioelectron 22(7):1410–1418. https://doi.org/10.1016/j.bios.2006.06.016

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by TUBİTAK (The Scientific and Technological Research Council of Turkey), Project number: 121 Z 833.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elif Burcu Aydın.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1121 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydın, E.B., Aydın, M. & Sezgintürk, M.K. A new immunosensing platform based on conjugated Poly(ThidEp-co-EDOT) copolymer for resistin detection, a new obesity biomarker. Microchim Acta 191, 69 (2024). https://doi.org/10.1007/s00604-023-06145-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06145-8

Keywords

Navigation