Skip to main content
Log in

Novel RNA genosensor based on highly stable gold nanoparticles decorated phosphorene nanohybrid with graphene for highly sensitive and low-cost electrochemical detection of coconut cadang-cadang viroid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Coconut cadang-cadang viroid (CCCVd) is an infectious single-stranded RNA (ssRNA) pathogen, which leads directly to the death of a large number of coconut palm trees and heavy economic loss to coconut farmers. Herein, a novel electrochemical impedance RNA genosensor is presented based on highly stable gold nanoparticles (AuNPs) decorated phosphorene (BP) nanohybrid with graphene (Gr) for highly sensitive, low-cost, and label-free detection of CCCVd. BP-AuNPs are environmentally friendly prepared by ultrasonic-assisted liquid-phase exfoliation of black phosphorus, accompanying direct reduction of chloroauric acid. Gr/BP-AuNPs are facilely prepared by the in situ growth of AuNPs onto the BP surface and its nanohybrid with Gr to improve environmental stability of BP. Gr/BP-AuNP-based RNA genosensor is fabricated by immobilizing the thiol-functionalized single-stranded DNA (ssDNA) oligonucleotide probe onto the surface of Gr/BP-AuNP-modified glassy carbon electrode via gold-thiol interactions, which served as an electrochemical genosensing platform for the label-free impedance detection of CCCVd by hybridization between the functionalized ssDNA probe and the complementary CCCVd ssRNA sequence in a wide linear range from 1.0 × 10−11 to 1.0 × 10−7 M with a low limit of detection of 2.8 × 10−12 M. This work supplies an experimental support and theoretical direction for the fabrication of RNA biosensors based on graphene-like materials and potential application for a specific diagnosis of plant RNA viral disease in Arecaceae planting industry.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Haseloff J, Mohamed NA, Symons RH (1982) Viroid RNAs of cadang-cadang disease of coconuts. Nature (London) 299:316

    Article  CAS  Google Scholar 

  2. Vadamalai G, Perera AAFLK, Hanold D, Rezaian MA, Randles JW (2009) Detection of Coconut cadang-cadang viroid sequences in oil and coconut palm by ribonulease protection assay. Ann Appl 154:117

    Article  CAS  Google Scholar 

  3. Thanarajoo SS, Kong LL, Kadir J, Lau WH, Thanarajoo G (2014) Detection of coconut cadang-cadang viroid (CCCVd) in oil palm by reverse transcription loop-mediated isothermal amplification (RT-LAMP). J Virol Methods 202:19

    Article  CAS  PubMed  Google Scholar 

  4. Roslan Nd (2022) Comparison of real-time PCR conventional PCR and RT-LAMP for the detection of COCONUT cadang-cadang viroid variant in oil palm. J Oil Palm Res 35:121

    Google Scholar 

  5. Du Y, Dong S (2017) Nucleic acid biosensors: recent advances and perspectives. Anal Chem 89:189

    Article  CAS  PubMed  Google Scholar 

  6. Brazaca LC, Dos Santos PL, de Oliveira PR, Rocha DP, Stefano JS, Kalinke C, Munoz RAA, Bonacin JA, Janegitz BC, Carrilho E (2021) Biosensing strategies for the electrochemical detection of viruses and viral diseases - a review. Anal Chim Acta 1159:338384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Low SS, Loh H, Boey JS, Khiew PS, Chiu WS, Tan MT (2017) Sensitivity enhancement of graphene/zinc oxide nanocomposite-based electrochemical impedance genosensor for single stranded RNA detection. Biosens Bioelectron 94:365

    Article  CAS  PubMed  Google Scholar 

  8. Ge Y, Liu P, Xu L, Qu M, Hao W, Liang H, Sheng Y, Zhu Y, Wen Y (2022) A portable wireless intelligent electrochemical sensor based on layer-by-layer sandwiched nanohybrid for terbutaline in meat products. Food Chem 371:131140

    Article  CAS  PubMed  Google Scholar 

  9. Ge Y, Camarada MB, Liu P, Qu M, Wen Y, Xu L, Liang H, En Liu, Zhang X, Hao W, Wang L (2022) A portable smart detection and electrocatalytic mechanism of mycophenolic acid: a machine learning-based electrochemical nanosensor to adapt variable-pH silage microenvironment. Sensor Actuat B-Chem 372:132627

    Article  CAS  Google Scholar 

  10. Cesewski E, Johnson BN (2020) Electrochemical biosensors for pathogen detection. Biosens Bioelectron 159:112214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Da Silva ETSG, Souto DEP, Barragan JTC, Giarola JDF, De Moraes ACM, Kubota LT (2017) Electrochemical biosensors in point-of-care devices: recent advances and future trends. Chemelectrochem 4:778

    Article  Google Scholar 

  12. Liu Z, Tao J, Zhu Z, Zhang Y, Wang H, Pang P, Wang H, Yang W (2022) A sensitive electrochemical assay for T4 polynucleotide kinase activity based on Fe3O4@TiO2 and gold nanoparticles hybrid probe modified mmgnetic electrode. J Electrochem Soc 169:027504

    Article  CAS  Google Scholar 

  13. Wang H, Zhang H, Xu L, Gan T, Huang K, Liu Y (2014) Electrochemical biosensor for simultaneous determination of guanine and adenine based on dopamine-melanin colloidal nanospheres–graphene. J Solid State Electr 18:2435

    Article  CAS  Google Scholar 

  14. Li Y, Zhai X, Liu X, Wang L, Liu H, Wang H (2016) Electrochemical determination of bisphenol A at ordered mesoporous carbon modified nano-carbon ionic liquid paste electrode. Talanta 148:362

    Article  CAS  PubMed  Google Scholar 

  15. Li Y, Zhai X, Wang H, Liu X, Guo L, Ji X, Wang L, Qiu H, Liu X (2015) Non-enzymatic sensing of uric acid using a carbon nanotube ionic-liquid paste electrode modified with poly(β-cyclodextrin). Microchim Acta 182:1877

    Article  CAS  Google Scholar 

  16. Masud MK, Umer M, Hossain MSA, Yamauchi Y, Nguyen N, Shiddiky MJA (2019) Nanoarchitecture frameworks for electrochemical miRNA detection. J Electroche M Soc 44:433

    CAS  Google Scholar 

  17. Pena-Bahamonde J, Nguyen HN, Fanourakis SK, Rodrigues DF (2018) Recent advances in graphene - based biosensor technology with applications in life sciences. J Nanobiotechnol 16:1

    Article  Google Scholar 

  18. Kang J, Wood JD, Wells SA, Lee JH, Liu X, Chen KS, Hersam MC (2015) Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano 9:3596

    Article  CAS  PubMed  Google Scholar 

  19. Zeng Y, Guo Z (2021) Synthesis and stabilization of black phosphorus and phosphorene: recent progress and perspectives. Iscience 24:10

    Article  Google Scholar 

  20. Tian Y, Wang H, Li H, Guo Z, Tian B, Cui Y, Li Z, Li G, Zhang H, Wu Y (2020) Recent advances in black phosphorus/carbon hybrid composites: from improved stability to applications. J Mater Chem A 8:4647

    Article  CAS  Google Scholar 

  21. Li Q, Zhou Q, Shi L, Chen Q, Wang J (2019) Recent advances in oxidation and degradation mechanisms of ultrathin 2D materials in ambient conditions and passivation strategies. J Mater Chem A 7:4291

    Article  CAS  Google Scholar 

  22. Abate Y, Akinwande D, Gamage S, Wang H, Snure S, Poudel N, Cronin SB (2018) Recent progress on stability and passivation of black phosphorus. Adv Mater 30:1704749

    Article  Google Scholar 

  23. Liu X, Chen K, Li X, Xu Q, Weng J, Xu J (2021) Electron matters: recent advances in passivation and applications of black phosphorus. Adv Mater 33:2005924

    Article  CAS  Google Scholar 

  24. Zhang W, Zhu S, Luque R, Han S, Hu L, Xu G (2016) Recent development of carbon electrode materials and their bioanalytical and environmental applications. Chem Soc Rev 45:715

    Article  CAS  PubMed  Google Scholar 

  25. Moschetto S, Ienco A, Manca G, Serrano-Ruiz M, Peruzzini M, Mezzi A, Brucale M, Bolognesi M, Toffanin S (2021) Easy and fastin situ functionalization of exfoliated 2D black phosphorus with gold nanoparticles. Dalton T 50:11610

    Article  CAS  Google Scholar 

  26. Chen H, Liu Z, Jiang O, Zhang J, Huang J, You X, Liang Z, Tao W, Wu J (2021) Nanocomposite of Au and black phosphorus quantum dots as versatile probes for amphibious SERS spectroscopy, 3D photoacoustic imaging and cancer therapy. Giant-Amsterdam 8:100073

    Article  CAS  Google Scholar 

  27. An CJ, Kang YH, Lee C, Cho SY (2018) Preparation of highly stable black phosphorus by gold decoration for high-performance thermoelectric generators. Adv Funct Mater 28:1800532

    Article  Google Scholar 

  28. Zhou X, Kuang Y, Li J, Hu S, Cheng C, Wang J, Qin X, Ou L, Su Z (2023) Melamine-Based Nanocomposites for Selective Dopamine and Uric Acid Sensing. ACS Appl Polym Mater 5:5609

    Article  CAS  Google Scholar 

  29. Qiao H, Liu H, Huang Z, Ma Q, Luo S, Li J, Liu Y, Zhong J, Qi X (2020) Black phosphorus nanosheets modified with Au nanoparticles as high conductivity and high activity electrocatalyst for oxygen evolution reaction. Adv Energy Mater 10:2002424

    Article  CAS  Google Scholar 

  30. Yanalak G, Doganay F, Eroglu Z, Kucukkececi H, Aslan E, Ozmen M, Bas SZ, Metin O, Hatav PI (2021) Ternary nanocomposites of mesoporous graphitic carbon nitride/black phosphorus/gold nanoparticles (mpg-CN/BP-Au) for photocatalytic hydrogen evolution and electrochemical sensing of paracetamol. Appl Surf Sci 557:149755

    Article  CAS  Google Scholar 

  31. Kumarasamy J, Camarada MB, Venkatraman D, Ju H, Dey RS, Wen Y (2018) One-step coelectrodeposition-assisted layer-by-layer assembly of gold nanoparticles and reduced graphene oxide and its self-healing three-dimensional nanohybrid for an ultrasensitive DNA sensor. Nanoscale 10:1196

    Article  CAS  Google Scholar 

  32. Ma H, Zhang L, Pan Y, Zhang K, Zhang Y (2008) A novel electrochemical DNA biosensor fabricated with layer-by-layer covalent attachment of multiwalled carbon nanotubes and gold nanoparticles. Electroanalysis (New York, N Y) 20:1220

    CAS  Google Scholar 

  33. Xue T, Sheng Y, Xu J, Li Y, Lu X, Zhu Y, Duan X, Wen Y (2019) In-situ reduction of Ag+ on black phosphorene and its NH2-MWCNT nanohybrid with high stability and dispersibility as nanozyme sensor for three ATP metabolites. Biosens Bioelectron 145:111716

    Article  CAS  PubMed  Google Scholar 

  34. Sheng Y, Zhu Y, Ceron ML, Yi Y, Liu P, Wang P, Xue T, Camarada MB, Wen Y (2021) A stable nanosilver decorated phosphorene nanozyme with phosphorus- doped porous carbon microsphere for intelligent sensing of 8-hydroxy-20- deoxyguanosine. J Electroanal Chem 895:115522

    Article  CAS  Google Scholar 

  35. Jayakumar K, Camarada MB, Rajesh R, Venkatesan R, Ju H, Dharuman V, Wen Y (2018) Layer-by-layer assembled gold nanoparticles/lower-generation (Gn≤3) polyamidoamine dendrimers-grafted reduced graphene oxide nanohybrids with 3D fractal architecture for fast, ultra-trace, and label-free electrochemical gene nanobiosensors. Biosens Bioelectron 120:55

    Article  CAS  PubMed  Google Scholar 

  36. Jayakumar K, Camarada MB, Dharuman V, Rajesh R, Venkatesan R, Ju H, Maniraj M, Rai A, Barman SR, Wen Y (2018) Layer-by-layer assembled AuNPs decorated first-generation poly (amidoamine) dendrimer with reduced graphene oxide core as highly-sensitive biosensing platform with controllable 3D nanoarchitecture for rapid voltammetric analysis of ultra-trace DNA hybridization. ACS Appl Mater Interfaces 10:21541

    Article  CAS  PubMed  Google Scholar 

  37. Huang P, Xiong Y, Ge Y, Wen Y, Zeng X, Zhang J, Wang P, Wang Z, Chen S (2023) Magnetic Fe3O4 nanoparticles decorated phosphorus-doped biochar-attapulgite/bismuth film electrode for smartphone-operated wireless portable sensing of ultra-trace multiple heavy metal ions. Microchimi Acta 190:94

    Article  CAS  Google Scholar 

  38. Su Z, Xu X, Cheng Y, Tan Y, Xiao L, Tang D, Jiang H, Qin X, Wang H (2019) Chemical pre-reduction and electro-reduction guided preparation of a porous graphene bionanocomposite for indole-3-acetic acid detection. Nanoscale 11:962

    Article  CAS  PubMed  Google Scholar 

  39. Ge Y, Li M, Zhong Y, Xu L, Lu X, Hu J, Peng Q, Bai L, Wen Y (2023) Halloysite nanotube/black phosphorene nanohybrid modified screen-printed carbon electrode as an ultra-portable electrochemical sensing platform for smartphone-capable detection of maleic hydrazide with machine learning assistance. Food Chem 406:134967

    Article  CAS  PubMed  Google Scholar 

  40. Sangili A, Kalyani T, Chen S, Rajendran K, Jana SK (2022) Label-free electrochemical immunosensor based on l-cysteine-functionalized AuNP on reduced graphene oxide for the detection of dengue virus E-protein in dengue blood serum. COMPOS PART B-ENG 238:109876

    Article  CAS  Google Scholar 

  41. Zhu X, Lin L, Wu R, Zhu Y, Sheng Y, Liu P, Xu L, Wen Y (2021) Portable wireless intelligent sensing of ultra-trace phytoregulator α-naphthalene acetic acid using self-assembled phosphorene/Ti3C2-MXene nanohybrid with high ambient stability on laser induced porous graphene as nanozyme flexible electrode. Biosens Bioelectron 179:113062

    Article  CAS  PubMed  Google Scholar 

  42. Madihah AZ, Maizatul-Suriza M, Idris AS (2020) Reverse transcription loop-mediated isothermal amplification (RT-LAMP) for detection of coconut cadang-cadang viroid (CCCVd) variants in oil palm. J Oil Palm Res 32:453

    CAS  Google Scholar 

  43. Roslan ND, Meilina OA, Mohamed-Azni IA, Seman IA, Sundram S (2016) Comparison of RNA extraction methods for RT-PCR detection of coconut cadang-cadang viroid variant in orange spotting oil palm leaves. Can J Plant Pathol 38:382–388

    Article  CAS  Google Scholar 

  44. Mohamed NA, Imperial JS (1984) Detection and concentration of coconut cadang-cadang viroid in coconut leaf extracts. Phytopatholopy 74:165

    Article  CAS  Google Scholar 

  45. Faggiolli F, Luigi M, Boubourakas I N (2017) Viroid amplification methods: RT-PCR, Real-Time RT-PCR, and RT-LAMP. Academic Press pp 381

  46. Bragard C, Baptista P, Chatzivassiliou E, Gonthier P, Miret JAJ, Justesen AF, Macleod A, Magnusson CS, Milonas P, Navas-Cortes JA, Parnell S, Potting R, Stefani E, Thulke HH, Van der Werf W, Vicent CA, Yuen J, Zappala L, Carluccio AV, Chiumenti M, Di Serio F, Rubino L, Maiorano A, Pautasso M, Reignault PL (2023) Pest categorisation of coconut cadang-cadang viroid. Efsa J 21:8021

    Google Scholar 

Download references

Funding

The work is supported by the National Natural Science Foundation of China (51962007, 31960449), Training Project of High-Level and High-Skilled Leading Talents of Jiangxi Province; the Natural Science Foundation of Jiangxi Province (20192ACBL21015); and the Jiangxi Provincial Department of Education (GJJ200461).

Author information

Authors and Affiliations

Authors

Contributions

YuWa: Investigation, data processing, formal analysis, writing (original draft), writing—review and editing. WW: Investigation, data processing, formal analysis. XL: Conceptualization, investigation, methodology. TC: Methodology, investigation. YiWa: Project administration, Methodology, Supervision. YaWe: Writing (review and editing), project administration, funding acquisition. JH: Project administration, funding acquisition. JS: Project administration, methodology, supervision. XW: Project administration, Funding acquisition.

Corresponding authors

Correspondence to Yihua Wang or Yangping Wen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 698 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, W., Lu, X. et al. Novel RNA genosensor based on highly stable gold nanoparticles decorated phosphorene nanohybrid with graphene for highly sensitive and low-cost electrochemical detection of coconut cadang-cadang viroid. Microchim Acta 191, 52 (2024). https://doi.org/10.1007/s00604-023-06130-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06130-1

Keywords

Navigation