Skip to main content
Log in

Self-assembly of DNA-gold nanoaggregate for visual detection of thymidine kinase 1 (TK1) mRNA via lateral flow assay

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Nucleic acid lateral flow assay (NALFA) with gold nanoparticles (AuNPs) as colorimetric probes have been extensively adopted for point-of-care testing (POCT). However, the sensitivity of NALFA still needs to be improved. Herein, DNA-gold nanoaggregate (DNA-AuNA) was assembled as a signal amplification probe of NALFA for sensitive detection of tumor marker TK1 mRNA. Four functional oligonucleotides with complementary pairs were assembled to form DNA-AuNA that coupled more AuNPs to improve sensitivity. Thus, the limit of detection (LOD) was 0.36 pM, which is lower than that of conventional AuNPs-based NALFA. Moreover, the bioassay showed good reproducibility, stability, and specificity for detecting TK1 mRNA. The detection of TK1 mRNA in human serum was also satisfactory. Therefore, DNA-AuNA-based NALFA provides a sensitive method for portable detection of TK1 mRNA.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Li D, Liu Q, Yang M, Xu H, Zhu M, Zhang Y, Xu J, Tian C, Yao J, Wang L, Liang Y (2023) Nanomaterials for mRNA-based therapeutics: challenges and opportunities. Bioeng Transl Med 8(3):e10492. https://doi.org/10.1002/btm2.10492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nance KD, Gamage ST, Alam MM, Yang A, Levy MJ, Link CN, Florens L, Washburn MP, Gu S, Oppenheim JJ, Meier JL (2022) Cytidine acetylation yields a hypoinflammatory synthetic messenger RNA. Cell Chem Biol 29(2):312–320. https://doi.org/10.1016/j.chembiol.2021.07.003

    Article  CAS  PubMed  Google Scholar 

  3. Okamoto T, Okajima H, Ogawa E, Uebayashi EY, Yamamoto M, Kadohisa M, Yamada Y, Minamiguchi S, Haga H, Hatano E (2022) Two cases of possible exacerbation of chronic rejection after Anti-SARS-CoV-2 messenger RNA vaccination: a case report. Transplant Proc 55(3):530–532. https://doi.org/10.1016/j.transproceed.2022.11.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tang Y, Liao X, Wang C, Liu Y, Pan J, Tian Y, Teng Z, Lu G (2021) Self-assembled small messenger RNA nanospheres for efficient therapeutic apoptin expression and synergistic Gene-Chemotherapy of breast cancer. J Colloid Interface Sci 603:191–198. https://doi.org/10.1016/j.jcis.2021.06.061

    Article  CAS  PubMed  Google Scholar 

  5. Gao M, Zhang Q, Feng X-H, Liu J (2021) Synthetic modified messenger RNA for therapeutic applications. Acta Biomater 131:1–15. https://doi.org/10.1016/j.actbio.2021.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li J, Wu Y, Xiang J, Wang H, Zhuang Q, Wei T, Cao Z, Gu Q, Liu Z, Peng R (2023) Fluoroalkane modified cationic polymers for personalized mRNA cancer vaccines. Chem Eng J 456:140930. https://doi.org/10.1016/j.cej.2022.140930

    Article  CAS  PubMed  Google Scholar 

  7. Kristensen T, Jensen HK, Munch-Petersen B (1994) Overexpression of human thymidine kinase mRNA without corresponding enzymatic activity in patients with chronic lymphatic leukemia. Leuk Res 18(11):861–866. https://doi.org/10.1016/0145-2126(94)90168-6

    Article  CAS  PubMed  Google Scholar 

  8. Liu H, Jiang G, Liu L, Xue L, Li Y, Wu Y, Yang R (2022) Multicomponent Cu@Cu2O@C hybrid-induced photocurrent polarity switching biosensing strategy for the detection of TK1 mRNA. Sens Actuators B Chem 372:132631. https://doi.org/10.1016/j.snb.2022.132631

    Article  CAS  Google Scholar 

  9. Cheng H, Liu J, Ma W, Duan S, Huang J, He X, Wang K (2018) Low background cascade signal amplification electrochemical sensing platform for tumor-related mRNA quantification by target-activated hybridization chain reaction and electroactive cargo release. Anal Chem 90(21):12544–12552. https://doi.org/10.1021/acs.analchem.8b02470

    Article  CAS  PubMed  Google Scholar 

  10. Yu X, Hu L, He H, Zhang F, Wang M, Wei W, Xia Z (2019) Y-shaped DNA-Mediated hybrid nanoflowers as efficient gene carriers for fluorescence imaging of tumor-related mRNA in living cells. Anal Chim Acta 1057:114–122. https://doi.org/10.1016/j.aca.2018.12.062

    Article  CAS  PubMed  Google Scholar 

  11. Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1(3):1559–1582. https://doi.org/10.1038/nprot.2006.236

    Article  CAS  PubMed  Google Scholar 

  12. Hu J, Zhang Y, Chai Y, Yuan R (2022) Boron carbon nitride nanosheets-ru nanocomposite self-enhancement electrochemiluminescence emitter with a three-dimensional DNA network structure as a signal amplifier for ultrasensitive detection of TK1 mRNA. Anal Chem 94(32):11345–11351. https://doi.org/10.1021/acs.analchem.2c02110

    Article  CAS  PubMed  Google Scholar 

  13. Ma W, Chen B, Jia R, Sun H, Huang J, Cheng H, Wang H, He X, Wang K (2021) In situ hand-in-hand DNA tile assembly: a pH-driven and aptamer-targeted DNA nanostructure for TK1 mRNA visualization and synergetic killing of cancer cells. Anal Chem 93(30):10511–10518. https://doi.org/10.1021/acs.analchem.1c01453

    Article  CAS  PubMed  Google Scholar 

  14. Renzi E, Piper A, Nastri F, Merkoçi A, Lombardi A (2023) An artificial miniaturized peroxidase for signal amplification in lateral flow immunoassays. Small 2207949. https://doi.org/10.1002/smll.202207949

  15. Wang Y, Hou Y, Li H, Yang M, Zhao P, Sun B (2019) A SERS-based lateral flow assay for the stroke biomarker S100-β. Microchim Acta 186(8):548. https://doi.org/10.1007/s00604-019-3634-z

    Article  CAS  Google Scholar 

  16. Shi L, Tang Q, Yang B, Liu W, Li B, Yang C, Jin Y (2023) Dual-mode logic gate for intelligent and portable detection of microRNA based on gas pressure and lateral flow assay. Anal Chem 95(14):6090–6097. https://doi.org/10.1021/acs.analchem.3c00259

    Article  CAS  PubMed  Google Scholar 

  17. Craw P, Balachandran W (2012) Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review. Lab Chip 12(14):2469–2486. https://doi.org/10.1039/c2lc40100b

    Article  CAS  PubMed  Google Scholar 

  18. Li F, You M, Li S, Hu J, Liu C, Gong Y, Yang H, Xu F (2020) Paper-based point-of-care immunoassays: Recent advances and emerging trends. Biotechnol Adv 39:107442. https://doi.org/10.1016/j.biotechadv.2019.107442

    Article  CAS  PubMed  Google Scholar 

  19. Wang T, Chen L, Chikkanna A, Chen S, Brusius I, Sbuh N, Veedu RN (2021) Development of nucleic acid aptamer-based lateral flow assays: A robust platform for cost-effective point-of-care diagnosis. Theranostics 11(11):5174–5196. https://doi.org/10.7150/thno.56471

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hu J, Wang L, Li F, Han Y, Lin M, Lu T, Xu F (2013) Oligonucleotide-linked gold nanoparticle aggregates for enhanced sensitivity in lateral flow assays. Lab Chip 13:4352–4357. https://doi.org/10.1039/C3LC50672J

    Article  CAS  PubMed  Google Scholar 

  21. Ou Y, Jin X, Liu J, Tian Y, Zhou N (2019) Visual detection of kanamycin with DNA-functionalized gold nanoparticles probe in aptamer-based strip biosensor. Anal Biochem 587:113432. https://doi.org/10.1016/j.ab.2019.113432

    Article  CAS  PubMed  Google Scholar 

  22. Gao X, Xu LP, Wu T, Wen Y, Ma X, Zhang X (2016) An enzyme-amplified lateral flow strip biosensor for visual detection of microRNA-224. Talanta 146:648–654. https://doi.org/10.1016/j.talanta.2015.06.060

    Article  CAS  PubMed  Google Scholar 

  23. Zhang J, Tang L, Yu Q, Qiu W, Li K, Cheng L, Zhang T, Qian L, Zhang X, Liu G (2021) Gold-platinum nanoflowers as colored and catalytic labels for ultrasensitive lateral flow MicroRNA-21 assay. Sens Actuators B Chem 344:130325. https://doi.org/10.1016/j.snb.2021.130325

    Article  CAS  Google Scholar 

  24. Zhu M, Wang Y, Deng Y, Yao L, Adeloju SB, Pan D, Xue F, Wu Y, Zheng L, Chen W (2014) Ultrasensitive detection of mercury with a novel one-step signal amplified lateral flow strip based on gold nanoparticle-labeled ssDNA recognition and enhancement probes. Biosens Bioelectron 61:14–20. https://doi.org/10.1016/j.bios.2014.04.049

    Article  CAS  PubMed  Google Scholar 

  25. Ivanov AV, Safenkova IV, Zherdev AV, Dzantiev BB (2020) Nucleic acid lateral flow assay with recombinase polymerase amplification: Solutions for highly sensitive detection of RNA virus. Talanta 210:120616. https://doi.org/10.1016/j.talanta.2019.120616

    Article  CAS  PubMed  Google Scholar 

  26. Liu D, Shen H, Zhang Y, Shen D, Zhu M, Song Y, Zhu Z, Yang C (2021) A microfluidic-integrated lateral flow recombinase polymerase amplification (MI-IF-RPA) assay for rapid COVID-19 detection. Lab Chip 21(10):2019–2026. https://doi.org/10.1039/d0lc01222j

    Article  CAS  PubMed  Google Scholar 

  27. Mukama O, Yuan T, He Z, Li Z, Habimana JDD, Hussain M, Li W, Yi Z, Liang Q, Zeng L (2020) A high fidelity CRISPR/Cas12a based lateral flow biosensor for the detection of HPV16 and HPV18. Sens Actuators B Chem 316:128119. https://doi.org/10.1016/j.snb.2020.128119

    Article  CAS  Google Scholar 

  28. Mukama O, Wu J, Li Z, Liang Q, Yi Z, Lu X, Liu Y, Liu Y, Hussain M, Makafe GG, Liu J, Xu N, Zeng L (2020) An ultrasensitive and specific point-of-care CRISPR/Cas12 based lateral flow biosensor for the rapid detection of nucleic acids. Biosens Bioelectron 159:112143. https://doi.org/10.1016/j.bios.2020.112143

    Article  CAS  PubMed  Google Scholar 

  29. Zhu X, Wang X, Han L, Chen T, Wang L, Li H, Li S, He L, Fu X, Chen S, Xing M, Chen H, Wang Y (2020) Multiplex reverse transcription loop-mediated isothermal amplification combined with nanoparticle-based lateral flow biosensor for the diagnosis of COVID-19. Biosens Bioelectron 166:112437. https://doi.org/10.1016/j.bios.2020.112437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang C, Zheng T, Wang H, Chen W, Huang X, Liang J, Qiu L, Han D, Tan W (2021) Rapid one-pot detection of SARS-CoV-2 based on a lateral flow assay in clinical samples. Anal Chem 93(7):3325–3330. https://doi.org/10.1021/acs.analchem.0c05059

    Article  CAS  PubMed  Google Scholar 

  31. Hu M, Yuan C, Tian T, Wang X, Sun J, Xiong E, Zhou X (2020) Single-step, salt-aging-free, and thiol-free freezing construction of AuNP-based bioprobes for advancing CRISPR-based diagnostics. J Am Chem Soc 142(16):7506–7513. https://doi.org/10.1021/jacs.0c00217

    Article  CAS  PubMed  Google Scholar 

  32. Liu B, Liu J (2017) Freezing directed construction of bio/nano interfaces: reagentless conjugation, denser spherical nucleic acids, and better nanoflares. J Am Chem Soc 139(28):9471–9474. https://doi.org/10.1021/jacs.7b04885

    Article  CAS  PubMed  Google Scholar 

  33. Kimura-Suda H, Petrovykh DY, Tarlov MJ, Whitman LJ (2003) Base-dependent competitive adsorption of single-stranded DNA on gold. J Am Chem Soc 125(30):9014–9015. https://doi.org/10.1021/ja035756n

    Article  CAS  PubMed  Google Scholar 

  34. Opdahl A, Petrovykh DY, Kimura-Suda H, Tarlov MJ, Whitman LJ (2007) Independent control of grafting density and conformation of single-stranded DNA brushes. Proc Natl Acad Sci U S A 104(1):9–14. https://doi.org/10.1073/pnas.0608568103

    Article  CAS  PubMed  Google Scholar 

  35. Memon A, Zhou X, Liu J, Wang R, Liu L, Yu B, He M, Shi H (2017) Utilization of unmodified gold nanoparticles for label-free detection of mercury (II): Insight into rational design of mercury-specific oligonucleotides. J Hazard Mater 321:417–423. https://doi.org/10.1016/j.jhazmat.2016.09.025

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support through grants from the National Natural Science Foundation of China (No. 21974083) and Natural Science Basic Research Program of Shaanxi (No. 2021JZ-23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Jin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1231 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Shi, L., Tang, Q. et al. Self-assembly of DNA-gold nanoaggregate for visual detection of thymidine kinase 1 (TK1) mRNA via lateral flow assay. Microchim Acta 190, 454 (2023). https://doi.org/10.1007/s00604-023-06036-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06036-y

Keywords

Navigation