Skip to main content
Log in

Ingestible pH sensing device for gastrointestinal health monitoring based on thread-based electrochemical sensors

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

There exists a strong correlation between the pH levels of the gastrointestinal (GI) tract and GI diseases such as inflammatory bowel disease (IBS), ulcerative colitis, and pancreatis. Existing methods for diagnosing many GI diseases predominantly rely on invasive, expensive, and time-consuming techniques such as colonoscopy and endoscopy. In this study, an autonomous ingestible smart biosensing system in a pill format with integrated pH sensors is reported. The smart sensing pills will measure the pH profile as they transit through the GI tract. The data is then downloaded from the pills after they are collected from the feces. The sensor is based on electrodeposited PANI on carbon-coated conductive threads providing high pH sensitivity. Engineering innovations allowed integration of thread-based sensors on 3D-printed pill surfaces with front-end readout electronics, memory, and microcontroller assembled on mm-size circular printed circuit boards. The entire smart sensing pill possesses an overall length of 22.1 mm and an outer diameter of 9 mm. The modular biosensing system allows integration of thread-based biosensors to monitor other biomarkers in GI tract that mitigates the complex sensor fabrication process as well as overall pill assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PCB::

Printed circuit board

FIR::

Finite-impulse response

DSP::

Digital signal processing

FTIR::

Fourier-transform infrared

PANI::

Polyaniline

GI::

Gastrointestinal

IBS::

Inflammatory bowel disease

GERD::

Gastroesophageal reflux disease

ISFET::

Ion-sensitive field-effect transistor

IPA::

Isopropyl alcohol

PU::

Polyurethane

CC::

Carbon-coated

PVB::

Polyvinyl butyral

WE::

Working electrode

RE::

Reference electrode

CE::

Counter electrode

CV::

Cyclic voltammetry

OCV::

Open-circuit voltage

EEPROM::

Electrically-erasable programmable read-only memory

SPI::

Serial peripheral interface

ADC::

Analog to digital converter

NMOS::

N-type metal oxide semiconductor

PMOS::

P-type metal oxide semiconductor

SLA::

Stereolithography

FDA :

Food and drug administration

SEM::

Scanning electron microscope

EB::

Emeraldine base

ES::

Emeraldine salt

LE::

Leucoemeraldine

References

  1. Fallingborg J (1999) Intraluminal pH of the human gastrointestinal tract. Dan Med Bull 46(3):183–196

    CAS  PubMed  Google Scholar 

  2. Press AG, Hauptmann IA, Hauptmann L et al (1998) Gastrointestinal pH profiles in patients with inflammatory bowel disease. Alimentary Pharmacology & Therapeutics 12(7):673–678. https://doi.org/10.1046/j.1365-2036.1998.00358.x

    Article  CAS  Google Scholar 

  3. Kalantar-Zadeh K, Ha N, Ou JZ et al (2017) Ingestible sensors. ACS Sens 2(4):468–483. https://doi.org/10.1021/acssensors.7b00045

    Article  CAS  PubMed  Google Scholar 

  4. Steiger C, Abramson A, Nadeau P et al (2019) Ingestible electronics for diagnostics and therapy. Nat Rev Mater 4:83–98. https://doi.org/10.1038/s41578-018-0070-3

    Article  CAS  Google Scholar 

  5. Min J, Yang Y, Wu Z et al (2020) Robotics in the gut. Advanced Therapeutics 3(4):1900125. https://doi.org/10.1002/adtp.201900125

    Article  Google Scholar 

  6. Onuki Y, Bhardwaj U, Papadimitrakopoulos F et al (2008) A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response. J Diabetes Sci Technol 2(6):1003–15. https://doi.org/10.1177/193229680800200610

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gonzalez-Guillaumin JL, Sadowski DC, Kaler KVIS et al (2007) Ingestible capsule for impedance and pH monitoring in the esophagus. IEEE Trans Biomed Eng 54(12):2231–2236. https://doi.org/10.1109/TBME.2007.908332

    Article  PubMed  Google Scholar 

  8. Kalantar-zadeh K, Yao CK, Berean KJ et al (2016) Intestinal gas capsules: a proof-of-concept demonstration. Gastroenterology 150(1):37–39. https://doi.org/10.1053/j.gastro.2015.07.072

    Article  PubMed  Google Scholar 

  9. Nadeau P, El-Damak D, Glettig D et al (2017) Prolonged energy harvesting for ingestible devices. Nature Biomedical Engineering 1(0022). https://doi.org/10.1038/s41551-016-0022

  10. Mimee M, Nadeau P, Hayward A et al (2018) Prolonged energy harvesting for ingestible devices. Nature Biomedical Engineering 360(6391):915–918. https://doi.org/10.1126/science.aas9315

    Article  CAS  Google Scholar 

  11. Cao H, Landge V, Tata U et al (2012) An implantable, batteryless, and wireless capsule with integrated impedance and pH sensors for gastroesophageal reflux monitoring. IEEE Trans Biomed Eng 59(11):3131–3139. https://doi.org/10.1109/TBME.2012.2214773

    Article  PubMed  Google Scholar 

  12. Zhou L, Cheng C, Li X et al (2020) Nanochannel templated iridium oxide nanostructures for wide-range pH sensing from solutions to human skin surface. Anal Chem 92(5):3844–3851. https://doi.org/10.1021/acs.analchem.9b05289

    Article  CAS  PubMed  Google Scholar 

  13. Cheng C, Wu Y, Li X et al (2021) A wireless, ingestible pH sensing capsule system based on iridium oxide for monitoring gastrointestinal health. Sensors and Actuators B: Chemical 349:130781. https://doi.org/10.1016/j.snb.2021.130781

    Article  CAS  Google Scholar 

  14. Arefin MS, Redouté JM, Yuce MR (2018) Integration of low-power ASIC and MEMS sensors for monitoring gastrointestinal tract using a wireless capsule system. IEEE Journal of Biomedical and Health Informatics 22(1):87–97. https://doi.org/10.1109/JBHI.2017.2690965

  15. Rajan TS, Read TL, Abdalla A et al (2020) Ex vivo electrochemical pH mapping of the gastrointestinal tract in the absence and presence of pharmacological agents. ACS Sensors 5(9):2858–2865. https://doi.org/10.1021/acssensors.0c01020

    Article  CAS  PubMed  Google Scholar 

  16. Xu F, Yan G, Wang Z et al (2015) Continuous accurate pH measurements of human GI tract using a digital pH-ISFET sensor inside a wireless capsule. Measurement 64:49–56. https://doi.org/10.1016/j.measurement.2014.12.044

    Article  Google Scholar 

  17. Ges IA, Ivanov BL, Schaffer DK et al (2005) Thin-film IrOx pH microelectrode for microfluidic-based microsystems. Biosens Bioelectron 21(2):248–256. https://doi.org/10.1016/j.bios.2004.09.021

    Article  CAS  PubMed  Google Scholar 

  18. Manjakkal L, Szwagierczak D, Dahiya R (2020) Metal oxides based electrochemical pH sensors: current progress and future perspectives. Prog Mater Sci 109. https://doi.org/10.1016/j.pmatsci.2019.100635

  19. Mostafalu P, Akbari M, Alberti K et al (2016) A toolkit of thread-based microfluidics, sensors, and electronics for 3D tissue embedding for medical diagnostics. Microsyst Nanoeng 2(16039). https://doi.org/10.1038/micronano.2016.39

  20. Lyu B, Punjiya M, Matharu Z et al (2018) An improved pH mapping bandage with thread-based sensors for chronic wound monitoring. In: 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pp 1–4. https://doi.org/10.1109/ISCAS.2018.8351878

  21. Terse-Thakoor T, Punjiya M, Matharu Z et al (2020) Thread-based multiplexed sensor patch for real-time sweat monitoring. npj Flex Electron 4(18). https://doi.org/10.1038/s41528-020-00081-w

  22. Xia J, Khaliliazar S, Hamedi M et al (2021) Thread-based wearable devices. MRS Bulletin 46:502–511. https://doi.org/10.1557/s43577-021-00116-1

    Article  CAS  Google Scholar 

  23. Asci C, Del-Rio-Ruiz R, Sharma A et al (2022) Ingestible pH sensing capsule with thread-based electrochemical sensors. In: 2022 IEEE Sensors, pp 1–4. https://doi.org/10.1109/SENSORS52175.2022.9967347

  24. Xia J, Sonkusale S (2021) Flexible thread-based electrochemical sensors for oxygen monitoring. Analyst 146:2983–2990. https://doi.org/10.1039/D0AN02400G

    Article  CAS  PubMed  Google Scholar 

  25. Glass P, Cheung E, Sitti M (2008) A legged anchoring mechanism for capsule endoscopes using micropatterned adhesives. IEEE Trans Biomed Eng 55(12):2759–2767. https://doi.org/10.1109/TBME.2008.2002111

    Article  PubMed  Google Scholar 

  26. Basar MR, Ahmad MY, Cho J et al (2018) An improved wearable resonant wireless power transfer system for biomedical capsule endoscope. IEEE Trans Ind Electron 65(10):7772–7781. https://doi.org/10.1109/TIE.2018.2801781

    Article  Google Scholar 

  27. Punjiya M, Nejad HR, Mostafalu P et al (2017) pH sensing threads with CMOS readout for smart bandages. In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp 1–4. https://doi.org/10.1109/ISCAS.2017.8050730

  28. Mostafalu P, Tamayol A, Rahimi R et al (2018) Smart bandage for monitoring and treatment of chronic wounds. Small 14(33):1703509. https://doi.org/10.1002/smll.201703509

    Article  CAS  Google Scholar 

  29. Smith RE, Totti S, Velliou E et al (2019) Development of a novel highly conductive and flexible cotton yarn for wearable pH sensor technology. Sensors and Actuators B: Chemical 287:338–345. https://doi.org/10.1016/j.snb.2019.01.088

    Article  CAS  Google Scholar 

  30. Mazzara F, Patella B, D’Agostino C et al (2021) PANI-based wearable electrochemical sensor for pH sweat monitoring. Chemosensors 9(7). https://doi.org/10.3390/chemosensors9070169

  31. Huang YY, Wu J (2022) Preparation and characterization of graphene oxide/polyaniline/carbonyl iron nanocomposites. Materials (Basel) 15(2). https://doi.org/10.3390/ma15020484

  32. Duan W, Ronen A, Walker S et al (2016) Polyaniline-coated carbon nanotube ultrafiltration membranes: enhanced anodic stability for in situ cleaning and electro-oxidation processes. ACS Appl Mater Interfaces 8(34):22574–22584. https://doi.org/10.1021/acsami.6b07196

    Article  CAS  PubMed  Google Scholar 

  33. Pan W, Chen Q (2022) Preparation and electroactuation of water-based polyurethane-based polyaniline conductive composites. e-Polymers 22(1):182–189. https://doi.org/10.1515/epoly-2022-0005

  34. Fleischer M, Meixner H (1992) Sensing reducing gases at high temperatures using long-term stable Ga2O3 thin films. Sensors and Actuators B: Chemical 6(1):257–261. https://doi.org/10.1016/0925-4005(92)80065-6

    Article  CAS  Google Scholar 

  35. Li Y, Mao Y, Xiao C et al (2020) Flexible pH sensor based on a conductive PANI membrane for pH monitoring. RSC Adv 10:21–28. https://doi.org/10.1039/C9RA09188B

    Article  CAS  Google Scholar 

  36. Ge C, Armstrong N, Saavedra SS (2007) pH-sensing properties of poly(aniline)ultrathin films self-assembled on indium-tin oxide. Anal Chem 79(4):1401–1410. https://doi.org/10.1021/ac061740e

    Article  CAS  PubMed  Google Scholar 

  37. Stack BH (1969) Use of the Heidelberg pH capsule in the routine assessment of gastric acid secretion. Gut 10:245–246. https://doi.org/10.1136/gut.10.3.245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kwiatek M, Pandolfino J (2008) The BravoTM pH capsule system. Dig Liver Dis 40(3):156–160. https://doi.org/10.1016/j.dld.2007.10.025

    Article  CAS  PubMed  Google Scholar 

  39. Zhao K, Yan G, Lu L et al (2015) Low-power wireless electronic capsule for long-term gastrointestinal monitoring. J Med Syst 39(9). https://doi.org/10.1007/s10916-015-0211-9

  40. Jiang H, Yu W, Oscai M et al (2018) A smart capsule with a hydrogel-based pH-triggered release switch for GI-tract site-specific drug delivery. IEEE Trans Biomed Eng 65(12):2808–2813. https://doi.org/10.1109/TBME.2018.2818463

    Article  PubMed  Google Scholar 

  41. De la Paz E, Maganti NH, Trifonov A et al (2022) A self-powered ingestible wireless biosensing system for real-time in situ monitoring of gastrointestinal tract metabolites. Nat Commun 13(1). https://doi.org/10.1038/s41467-022-35074-y

  42. Gopalakrishnan S, Thomas R, Sedaghat S et al (2023) Smart capsule for monitoring inflammation profile throughout the gastrointestinal tract. Biosensors and Bioelectronics: X 14:100380. https://doi.org/10.1016/j.biosx.2023.100380

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the National Institute of Health (NIH) under the grant R21AI144521 and R21DK132314. S. Sonkusale would also like to acknowledge DoD DURIP and Massachusetts Life Sciences Center (MLSC) for equipment support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameer Sonkusale.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (docx 377 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asci, C., Sharma, A., Del-Rio-Ruiz, R. et al. Ingestible pH sensing device for gastrointestinal health monitoring based on thread-based electrochemical sensors. Microchim Acta 190, 385 (2023). https://doi.org/10.1007/s00604-023-05946-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05946-1

Keywords

Navigation