Skip to main content
Log in

Label-free “signal-off” PEC aptasensor for determination of kanamycin based on 3D nanoflower-like FeIn2S4/CdS Z-scheme heterostructures

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Highly photoactive 3D nanoflower-like FeIn2S4/CdS heterostructures were synthesized by hydrothermal treatment and low-temperature cation exchange. The FeIn2S4/CdS displayed 14.5 times signal amplification in contrast to FeIn2S4 alone. It was applied as a photoactive substrate to construct a label-free photoelectrochemical (PEC) aptasensor for ultrasensitive determination of kanamycin (KAN). Under the optimal conditions, the constructed PEC aptasensor displayed a wide linear range (5.0 × 10−4 ~ 5.0 × 101 ng mL−1) and a low detection limit (S/N = 3) of 40.01 fg mL−1. This study provides some constructive insights for preparation of advanced photoactive materials and exhibits great potential for quantitative determination of antibiotics in foods and environmental samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data underlying this article are available in the article and in its online supplementary material.

References

  1. Zhu X, Tang L, Wang J, Peng B, Ouyang X, Tan J, Yu J, Feng H, Tang J (2021) Enhanced peroxidase-like activity of boron nitride quantum dots anchored porous CeO2 nanorods by aptamer for highly sensitive colorimetric detection of kanamycin. Sens Actuators B Chem 330:129318

    CAS  Google Scholar 

  2. Chen X, Wang J, Shen H, Su X, Cao Y, Li T, Gan N (2019) Microfluidic chip for multiplex detection of trace chemical contaminants based on magnetic encoded aptamer probes and multibranched DNA nanostructures as signal tags. ACS Sens 4:2131–2139

    CAS  PubMed  Google Scholar 

  3. He X, Han H, Liu L, Shi W, Lu X, Dong J, Yang W, Lu X (2019) Self-assembled microgels for sensitive and low-fouling detection of streptomycin in complex media. ACS Appl Mater Interfaces 11:13676–13684

    CAS  PubMed  Google Scholar 

  4. Zhang X, Wang J, Wu Q, Li L, Wang Y, Yang H (2019) Determination of kanamycin by high performance liquid chromatography. Molecules 24:1902

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Li C, Zhang Y, Eremin SA, Yakup O, Yao G, Zhang X (2017) Detection of kanamycin and gentamicin residues in animal-derived food using IgY antibody based ic-ELISA and FPIA. Food Chem 227:48–54

    CAS  PubMed  Google Scholar 

  6. Wang X, Zhang W, Gao X, Sun Z, Sun X, Guo Y, Li F, Boboriko NE (2022) Fluorescent aptasensor based on DNA-AgNCs emitting in the visible red wavelength range for detection of kanamycin in milk. Sens Actuators B Chem 360:131665

    CAS  Google Scholar 

  7. Chen W, Zhu M, Liu Q, Guo Y, Wang H, Wang K (2019) Fabricating photoelectrochemical aptasensor for sensitive detection of aflatoxin B1 with visible-light-driven BiOBr/nitrogen-doped graphene nanoribbons. J Electroanal Chem 840:67–73

    CAS  Google Scholar 

  8. Yang L, Liu X, Li L, Zhang S, Zheng H, Tang Y, Ju H (2019) A visible light photoelectrochemical sandwich aptasensor for adenosine triphosphate based on MgIn2S4-TiO2 nanoarray heterojunction. Biosens Bioelectron 142:111487

    CAS  PubMed  Google Scholar 

  9. Li F, Zhou Y, Yin H, Ai S (2020) Recent advances on signal amplification strategies in photoelectrochemical sensing of microRNAs. Biosens Bioelectron 166:112476

    CAS  PubMed  Google Scholar 

  10. Kim H, Tiwari AP, Hwang E, Cho Y, Hwang H, Bak S, Hong Y, Lee H (2018) FeIn2S4 nanocrystals: a ternary metal chalcogenide material for ambipolar field-effect transistors. Adv Sci 5:1800068

    Google Scholar 

  11. Wang R-N, Zeng F-L, Chen X-L, Zhu H-L, Qu L-B, Huang X-Q, Tang S, Zhao Y-F, Yu B (2022) Recyclable ZnIn2S4 microspheres for photocatalytic azolation of N-heterocycles. ACS Sustain Chem Eng 10:14212–14219

    CAS  Google Scholar 

  12. Xiong R, Tang C, Liu S, Xiao Y, Cheng B, Lei S (2022) Unique multi-hierarchical Z-scheme heterojunction of branching SnIn4S8 nanosheets on ZnIn2S4 nanopetals for boosted photocatalytic performance. Sep Purif Technol 295:121267

    CAS  Google Scholar 

  13. Xin F-F, Xue Y, Xu B-F, Wang A-J, Song P, Mei L-P, Feng J-J (2023) Ultrasensitive “on-off-on” photoelectrochemical aptasensor for tumor biomarker using BiOI/α-Fe2O3 p-n heterojunction arrays by in-situ regulation of electron donor distance. Sens Actuators B Chem 375:132933

    CAS  Google Scholar 

  14. Sun X, Luo X, Jin S, Zhang X, Wang H, Shao W, Wu X, Xie Y (2022) Surface modification of ZnIn2S4 layers to realize energy-transfer-mediated photocatalysis. Natl Sci Rev 9:nwac026

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wei J-J, Wang G-Q, Zheng J-Y, Wang A-J, Mei L-P, Feng J-J (2022) Dual-mode photoelectrochemical and electrochemical immunosensors for human epididymis protein 4 based on SPR-promoted Au nanoparticle/CdS nanosheet heterostructures. ACS Appl Nano Mater 5:14934–14941

    CAS  Google Scholar 

  16. Shangguan X-Y, Fang B-L, Xu C-X, Tan Y, Chen Y-G, Xia Z-J, Chen W (2021) Fabrication of direct Z-scheme FeIn2S4/Bi2WO6 hierarchical heterostructures with enhanced photocatalytic activity for tetracycline hydrochloride photodagradation. Ceram Int 47:6318–6328

    CAS  Google Scholar 

  17. Wei H, Meng F, Li J, Yu W, Zhang H (2023) FeIn2S4/Bi2MoO6 Z-scheme heterostructural composites efficiently degrade tetracycline hydrochloride under visible light. Appl Surf Sci 611:155642

    CAS  Google Scholar 

  18. Hu R, Xu B-F, Xue Y, Xu Z-Z, Wang A-J, Mei L-P, Song P, Feng J-J (2023) Tailoring enzymatic loading capacity on CdS nanorods@ZnIn2S4 nanosheets 1D/2D heterojunctions: toward ultrasensitive photoelectrochemical bioassay of tobramycin. Chemosphere 316:137808

    CAS  PubMed  Google Scholar 

  19. Zhang Y, Wu Y, Wan L, Ding H, Li H, Wang X, Zhang W (2022) Hollow core–shell Co9S8@ZnIn2S4/CdS nanoreactor for efficient photothermal effect and CO2 photoreduction. Appl Catal B 311:121255

    CAS  Google Scholar 

  20. Hu D, Liang H, Wang X, Luo F, Qiu B, Lin Z, Wang J (2020) Highly sensitive and selective photoelectrochemical aptasensor for cancer biomarker CA125 based on AuNPs/GaN schottky junction. Anal Chem 92:10114–10120

    CAS  PubMed  Google Scholar 

  21. Li H, Li Y, Li J, Yang F, Xu L, Wang W, Yao X, Yin Y (2020) Magnetic–optical core–shell nanostructures for highly selective photoelectrochemical aptasensing. Anal Chem 92:4094–4100

    CAS  PubMed  Google Scholar 

  22. Liu X, Liu P, Tang Y, Yang L, Li L, Qi Z, Li D, Wong DKY (2018) A photoelectrochemical aptasensor based on a 3D flower-like TiO2-MoS2-gold nanoparticle heterostructure for detection of kanamycin. Biosens Bioelectron 112:193–201

    CAS  PubMed  Google Scholar 

  23. Zhang C, Zhou L, Peng J (2021) Blue-light photoelectrochemical aptasensor for kanamycin based on synergistic strategy by Schottky junction and sensitization. Sens Actuators B Chem 340:129898

    CAS  Google Scholar 

  24. Lin G, Zheng J, Xu R (2008) Template-free synthesis of uniform CdS hollow nanospheres and their photocatalytic activities. J Phys Chem C 112:7363–7370

    CAS  Google Scholar 

  25. Zhang X, Wang P, Lv X, Niu X, Lin X, Zhong S, Wang D, Lin H, Chen J, Bai S (2022) Stacking engineering of semiconductor heterojunctions on hollow carbon spheres for boosting photocatalytic CO2 reduction. ACS Catal 12:2569–2580

    CAS  Google Scholar 

  26. He B, Wang L, Dong X, Yan X, Li M, Yan S, Yan D (2019) Aptamer-based thin film gold electrode modified with gold nanoparticles and carboxylated multi-walled carbon nanotubes for detecting oxytetracycline in chicken samples. Food Chem 300:125179

    CAS  PubMed  Google Scholar 

  27. Yang Q, Qin W, Xie Y, Zong K, Guo Y, Song Z, Luo G, Raza W, Hussain A, Ling Y, Luo J, Zhang W, Ye H, Zhao J (2022) Constructing 2D/1D heterostructural BiOBr/CdS composites to promote CO2 photoreduction. Sep Purif Technol 298:121603

    CAS  Google Scholar 

  28. Song P, Wang M, Xue Y, Wang A, Mei L, Feng J (2022) Bimetallic PtNi nanozyme-driven dual-amplified photoelectrochemical aptasensor for ultrasensitive detection of sulfamethazine based on Z-scheme heterostructured Co9S8@In-CdS nanotubes. Sens Actuators B Chem 371:132519

    CAS  Google Scholar 

  29. Xin F-F, Xu J-J, Zhang J, Wang A-J, Xue Y, Mei L-P, Song P, Feng J-J (2023) Nanozyme-assisted ratiometric photoelectrochemical aptasensor over Cu2O nanocubes mediated photocurrent-polarity-switching based on S-scheme FeCdS@FeIn2S4 heterostructure. Biosens Bioelectron 237:115442

    CAS  PubMed  Google Scholar 

  30. Li C, Du X, Jiang S, Liu Y, Niu Z, Liu Z, Yi S, Yue X (2022) Constructing direct Z-scheme heterostructure by enwrapping ZnIn2S4 on CdS hollow cube for efficient photocatalytic H2 generation. Adv Sci 9:2201773

    CAS  Google Scholar 

  31. Zhu J-H, Gou H, Zhao T, Mei L-P, Wang A-J, Feng J-J (2022) Ultrasensitive photoelectrochemical aptasensor for detecting telomerase activity based on Ag2S/Ag decorated ZnIn2S4/C3N4 3D/2D Z-scheme heterostructures and amplified by Au/Cu2+-boron-nitride nanozyme. Biosens Bioelectron 203:114048

    CAS  PubMed  Google Scholar 

  32. Wang G-Q, Wei J-J, Ye J-Y, Wang A-J, Mei L-P, Feng J-J (2023) A signal-off photoelectrochemical aptasensor for highly sensitive detection of T-2 toxin using 3D CdS/CdIn2S4 heterostructured nanostars by in-situ generated electron donor strategy. Sens Actuators B Chem 381:133421

    CAS  Google Scholar 

  33. Wang L, Li Q, Song J, Lu X, Tian Z, Liu Y, Zhang J (2022) Construction of hierarchical FeIn2S4/BiOBr S-scheme heterojunction with enhanced visible-light photocatalytic performance for antibiotics degradation. Adv Powder Technol 33:103859

    CAS  Google Scholar 

  34. Li R, Liu Y, Cheng L, Yang C, Zhang J (2014) Photoelectrochemical aptasensing of kanamycin using visible light-activated carbon nitride and graphene oxide nanocomposites. Anal Chem 86:9372–9375

    CAS  PubMed  Google Scholar 

  35. Qin X, Yin Y, Yu H, Guo W, Pei M (2016) A novel signal amplification strategy of an electrochemical aptasensor for kanamycin, based on thionine functionalized graphene and hierarchical nanoporous PtCu. Biosens Bioelectron 77:752–758

    CAS  PubMed  Google Scholar 

  36. Lv J, Lei Q, Xiao Q, Li X, Huang Y, Li H (2017) Facile fabrication of an “off–on” photoelectrochemical aptasensor for kanamycin detection based on polypyrrole/CeO2. Anal Methods 9:4754–4759

    CAS  Google Scholar 

  37. Li W, Xu L, Zhang X, Ding Z, Xu X, Cai X, Wang Y, Li C, Sun D (2023) Fabrication of a high-performance photoelectrochemical aptamer sensor based on Er-MOF nanoballs functionalized with ionic liquid and gold nanoparticles for aflatoxin B1 detection. Sens Actuators B Chem 378:133153

    CAS  Google Scholar 

  38. Wang B, Zhao X, Chen L, Yang C, Yan X (2021) Functionalized persistent luminescence nanoparticle-based aptasensor for autofluorescence-free determination of kanamycin in food samples. Anal Chem 93:2589–2595

    CAS  PubMed  Google Scholar 

  39. Li X, Qian Z, Chang R, Peng C, Xie Z, Wang Z (2022) Non-thiolated nucleic acid functionalized gold nanoparticle-based aptamer lateral flow assay for rapid detection of kanamycin. Mikrochim Acta 189:244

    CAS  PubMed  Google Scholar 

  40. Liu M, Yang Z, Li B, Du J (2021) Aptamer biorecognition-triggered hairpin switch and nicking enzyme assisted signal amplification for ultrasensitive colorimetric bioassay of kanamycin in milk. Food Chem 339:128059

    CAS  PubMed  Google Scholar 

  41. Li G, Liu S, Huo Y, Zhou H, Li S, Lin X, Kang W, Li S, Gao Z (2022) “Three-in-one” nanohybrids as synergistic nanozymes assisted with exonuclease I amplification to enhance colorimetric aptasensor for ultrasensitive detection of kanamycin. Anal Chim Acta 1222:340178

    CAS  PubMed  Google Scholar 

  42. Cheng S, Liu H, Zhang H, Chu G, Guo Y, Sun X (2020) Ultrasensitive electrochemiluminescence aptasensor for kanamycin detection based on silver nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide. Sens Actuators B Chem 304:127367

    CAS  Google Scholar 

Download references

Funding

This research was supported by National Natural Science Foundation of China (22204143), Natural Science Foundation of Zhejiang Province (LQ22B050006, and LQ21C060003), Jinhua Science and Technology Bureau (2021–3-058), Medical and Health Research Project of Zhejiang Province (2022KY424), State Key Laboratory of Analytical Chemistry for Life Science (SKLACLS2213), Research Fund of Jinhua Municipal Central Hospital (JY2021-5–03), and Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University (KF-2022–14).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Ping Mei or Jiu-Ju Feng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research highlights

• 3D nanoflower-like FeIn2S4/CdS Z-scheme heterostructures were prepared as an ideal photoactive material.

• FeIn2S4/CdS Z-type heterojunctions facilitated the separation and transport of the interfacial charges.

• The FeIn2S4/CdS exhibited 14.5-fold higher photocurrent than single FeIn2S4.

• Label-free PEC aptasensors show the higher sensitivity, faster analysis, and weaker interference than traditional techniques.

• The PEC aptasensor exhibited a wider linear range with a lower limit of detection for KAN.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6135 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, FF., Song, P., Fang, KM. et al. Label-free “signal-off” PEC aptasensor for determination of kanamycin based on 3D nanoflower-like FeIn2S4/CdS Z-scheme heterostructures. Microchim Acta 190, 351 (2023). https://doi.org/10.1007/s00604-023-05942-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05942-5

Keywords

Navigation