Skip to main content
Log in

Covalent organic framework in situ grown on the metal–organic framework as fiber coating for solid-phase microextraction of polycyclic aromatic hydrocarbons in tea

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel MIL-88-NH2@COF composite was produced by in situ growth of covalent organic framework (COF) on the metal–organic framework (MOF) surface. To obtain a coating fiber for solid-phase microextraction (SPME), the MIL-88-NH2@COF composite physically adhered to the stainless steel wire. Combined with gas chromatography-flame ionization detection (GC-FID), various analytes such as chlorophenols (CPs), phthalates (PAEs), and polycyclic aromatic hydrocarbons (PAHs) were extracted and determined to evaluate the extraction performance of MIL-88-NH2@COF coated fibers and explore their extraction mechanism. This composite exhibit excellent extraction performance and adsorption capacity for various analytes, especially for PAHs with enrichment factor up to 9858. The SPME-GC-FID method based on MIL-88-NH2@COF fiber was established for the determination of five PAHs after the main extraction conditions were optimized. Under optimal conditions, the proposed technique showed a wide linear range (1–150 ng mL−1) with a low limit of detection (0.019 ng mL−1) and a high coefficient of determination (R2 > 0.99). The developed SPME-GC-FID method was used to determine PAHs in green tea and black tea samples, with good recoveries of 51.70–103.64% and 68.56–103.64%, respectively. It is worth mentioning that this is the first time MIL-88-NH2@COF composites have been prepared and applied to SPME. The preparation method of the composite provides a new idea in adsorbent preparation, which will contribute to the field of SPME.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its electronic supplementary material.

References

  1. Wang X, Ye N (2017) Recent advances in metal-organic frameworks and covalent organic frameworks for sample preparation and chromatographic analysis. Electrophoresis 38:3059–3078. https://doi.org/10.1002/elps.201700248

    Article  CAS  PubMed  Google Scholar 

  2. Li N, Du J, Wu D, Liu J, Li N, Sun Z, Li G, Wu Y (2018) Recent advances in facile synthesis and applications of covalent organic framework materials as superior adsorbents in sample pretreatment. TrAC, Trends Anal Chem 108:154–166. https://doi.org/10.1016/j.trac.2018.08.025

    Article  CAS  Google Scholar 

  3. Wang J, Li J, Gao M, Zhang X (2018) Recent advances in covalent organic frameworks for separation and analysis of complex samples. TrAC, Trends Anal Chem 108:98–109. https://doi.org/10.1016/j.trac.2018.07.013

    Article  CAS  Google Scholar 

  4. Gonzalez-Salamo J, Jimenez-Skrzypek G, Ortega-Zamora C, Gonzalez-Curbelo MA, Hernandez-Borges J (2020) Covalent organic frameworks in sample preparation. Molecules 25:3288. https://doi.org/10.3390/molecules25143288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shen R, Huang L, Liu R, Shuai Q (2021) Determination of sulfonamides in meat by monolithic covalent organic frameworks based solid phase extraction coupled with high-performance liquid chromatography-mass spectrometric. J Chromatogr A 1655:462518. https://doi.org/10.1016/j.chroma.2021.462518

    Article  CAS  PubMed  Google Scholar 

  6. Ćirić S, Mitić V, Jovanović S, Ilić M, Nikolić J, Stojanović G, StankovJovanović V (2018) Dispersive micro-solid phase extraction of 16 priority polycyclic aromatic hydrocarbons from water by using thermally treated clinoptilolite, and their quantification by GC-MS. Microchim Acta 185:556. https://doi.org/10.1007/s00604-018-3091-0

    Article  CAS  Google Scholar 

  7. Sun M, Li C, Feng J, Sun H, Sun M, Feng Y, Ji X, Han S, Feng J (2022) Development of aerogels in solid-phase extraction and microextraction. TrAC, Trends Anal Chem 146:116497. https://doi.org/10.1016/j.trac.2021.116497

    Article  CAS  Google Scholar 

  8. Ghiasvand AR, Nouriasl K, Yazdankhah F (2018) Comparison of the atmospheric- and reduced-pressure hs-spme strategies for analysis of residual solvents in commercial antibiotics using a steel fiber coated with a multiwalled carbon nanotube/polyaniline nanocomposite. Anal Bioanal Chem 410:361–371. https://doi.org/10.1007/s00216-017-0726-7

    Article  CAS  PubMed  Google Scholar 

  9. Liu M, Liu J, Guo C, Li Y (2019) Metal azolate framework-66-coated fiber for headspace solid-phase microextraction of polycyclic aromatic hydrocarbons. J Chromatogr A 1584:57–63. https://doi.org/10.1016/j.chroma.2018.11.043

    Article  CAS  PubMed  Google Scholar 

  10. Feng J, Feng J, Ji X, Li C, Han S, Sun H, Sun M (2021) Recent advances of covalent organic frameworks for solid-phase microextraction. TrAC, Trends Anal Chem 137:116208. https://doi.org/10.1016/j.trac.2021.116208

    Article  CAS  Google Scholar 

  11. Nayak S, Kumal RR, Liu Z, Qiao B, Clark AE, Uysal A (2021) Origins of clustering of metalate-extractant complexes in liquid-liquid extraction. ACS Appl Mater Interfaces 13:24194–24206. https://doi.org/10.1021/acsami.0c23158

    Article  CAS  PubMed  Google Scholar 

  12. Farajzadeh MA, Feriduni B (2016) Successive pH- and heat-induced homogenous liquid-liquid extraction. J Chromatogr A 1459:9–16. https://doi.org/10.1016/j.chroma.2016.06.073

    Article  CAS  PubMed  Google Scholar 

  13. Zhang J, Chen Z, Tang S, Luo X, Xi J, He Z, Yu J, Wu F (2019) Fabrication of porphyrin-based magnetic covalent organic framework for effective extraction and enrichment of sulfonamides. Anal Chim Acta 1089:66–77. https://doi.org/10.1016/j.aca.2019.08.066

    Article  CAS  PubMed  Google Scholar 

  14. Feng S, Zhang A, Wu F, Luo X, Zhang J (2022) In-situ growth of boronic acid-decorated metal-organic framework on Fe3O4 nanospheres for specific enrichment of cis-diol containing nucleosides. Anal Chim Acta 1206:339772. https://doi.org/10.1016/j.aca.2022.339772

    Article  CAS  PubMed  Google Scholar 

  15. Zhang W, Zhang Y, Zhang G, Liu J, Zhao W, Zhang W, Hu K, Xie F, Zhang S (2019) Facile preparation of a cationic COF functionalized magnetic nanoparticle and its use for the determination of nine hydroxylated polycyclic aromatic hydrocarbons in smokers’ urine. Analyst 144:5829–5841. https://doi.org/10.1039/c9an01188a

    Article  CAS  PubMed  Google Scholar 

  16. Sun M, Feng J, Feng Y, Xin X, Ding Y, Sun M (2022) Preparation of ionic covalent organic frameworks and their applications in solid-phase extraction. TrAC, Trends Anal Chem 157:116829. https://doi.org/10.1016/j.trac.2022.116829

    Article  CAS  Google Scholar 

  17. Płotka-Wasylka J, Szczepańska N, de la Guardia M, Namieśnik J (2015) Miniaturized solid-phase extraction techniques. TrAC, Trends Anal Chem 73:19–38. https://doi.org/10.1016/j.trac.2015.04.026

    Article  CAS  Google Scholar 

  18. Ji Z, Wang H, Canossa S, Wuttke S, Yaghi OM (2020) Pore chemistry of metal-organic frameworks. Adv Funct Mater 30:2000238. https://doi.org/10.1002/adfm.202000238

    Article  CAS  Google Scholar 

  19. Chen Z, Kirlikovali KO, Li P, Farha OK (2022) Reticular chemistry for highly porous metal-organic frameworks: the chemistry and applications. Acc Chem Res 55:579–591. https://doi.org/10.1021/acs.accounts.1c00707

    Article  CAS  PubMed  Google Scholar 

  20. Gu ZY, Yang CX, Chang N, Yan XP (2012) Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation. Acc Chem Res 45:734–745. https://doi.org/10.1021/ar2002599

    Article  CAS  PubMed  Google Scholar 

  21. Qian HL, Yang CX, Wang WL, Yang C, Yan XP (2018) Advances in covalent organic frameworks in separation science. J Chromatogr A 1542:1–18. https://doi.org/10.1016/j.chroma.2018.02.023

    Article  CAS  PubMed  Google Scholar 

  22. Uribe-Romo FJ, Hunt JR, Furukawa H, Klöck C, O’Keeffe M, Yaghi OM (2009) A crystalline imine-linked 3-D porous covalent organic framework. J Am Chem Soc 131:4570–4571. https://doi.org/10.1021/ja8096256

    Article  CAS  PubMed  Google Scholar 

  23. Wang Z, Zhang S, Chen Y, Zhang Z, Ma S (2020) Covalent organic frameworks for separation applications. Chem Soc Rev 49:708–735. https://doi.org/10.1039/c9cs00827f

    Article  CAS  PubMed  Google Scholar 

  24. Wang B, Yan Y, Ding CF (2022) Metal organic frameworks as advanced adsorbent materials for separation and analysis of complex samples. J Chromatogr A 1671:462971. https://doi.org/10.1016/j.chroma.2022.462971

    Article  CAS  PubMed  Google Scholar 

  25. Wang J, Feng J, Lian Y, Sun X, Wang M, Sun M (2023) Advances of the functionalized covalent organic frameworks for sample preparation in food field. Food Chem 405:134818. https://doi.org/10.1016/j.foodchem.2022.134818

    Article  CAS  Google Scholar 

  26. Sun M, Feng J, Feng J, Sun H, Feng Y, Ji X, Li C, Han S, Sun M (2022) Biochar nanosphere- and covalent organic framework nanosphere-functionalized titanium dioxide nanorod arrays on carbon fibers for solid-phase microextraction of organic pollutants. Chem Eng J 433:133645. https://doi.org/10.1016/j.cej.2021.133645

    Article  CAS  Google Scholar 

  27. Wu MX, Wang Y, Zhou G, Liu X (2021) Sparks from different worlds: Collaboration of mofs and cofs. Coord Chem Rev 430:213735. https://doi.org/10.1016/j.ccr.2020.213735

    Article  CAS  Google Scholar 

  28. Zhang N, Bao T, Gao Y, Xu X, Wang S (2022) Growth of MOF@COF on corncob as effective adsorbent for enhancing adsorption of sulfonamides and its mechanism. Appl Surf Sci 580. https://doi.org/10.1016/j.apsusc.2021.152285

  29. Fu Q, Sun B, Fan J, Wang M, Sun X, Waterhouse GIN, Wu P, Ai S (2022) Mixed matrix of MOF@COF hybrids for enrichment and determination of phenoxy carboxylic acids in water and vegetables. Food Chem 371:131090. https://doi.org/10.1016/j.foodchem.2021.131090

    Article  CAS  PubMed  Google Scholar 

  30. Jiang HL, Fu QB, Wang ML, Lin JM, Zhao RS (2021) Determination of trace bisphenols in functional beverages through the magnetic solid-phase extraction with MOF-COF composite. Food Chem 345:128841. https://doi.org/10.1016/j.foodchem.2020.128841

    Article  CAS  PubMed  Google Scholar 

  31. Xu X, Zhang N, Gao Y, Bao T, Wang S (2022) MOF@COF functionalized cotton fiber as a platform for high performance extraction and removal of bisphenols from water samples. J Environ Chem Eng 10:107072. https://doi.org/10.1016/j.jece.2021.107072

    Article  CAS  Google Scholar 

  32. Chen Z, He Z, Luo X, Wu F, Tang S, Zhang J (2020) Synthesis of MOF@COF hybrid magnetic adsorbent for microextraction of sulfonamides in food and environmental samples. Food Anal Methods 13:1346–1356. https://doi.org/10.1007/s12161-020-01750-2

    Article  Google Scholar 

  33. Zhang J, Chen Z, Tang F, Wu F, Luo X, Liu G (2022) Fabrication of highly fluorinated porphyrin-based covalent organic frameworks decorated Fe3O4 nanospheres for magnetic solid phase extraction of fluoroquinolones. Microchim Acta 189:449. https://doi.org/10.1007/s00604-022-05541-w

    Article  CAS  Google Scholar 

  34. Feng ST, Zhang A, Wu FS, Luo XG, Zhang J (2022) Boronic acid grafted metal-organic framework for selective enrichment of cis-diol-containing compounds. J Chromatogr A 1677:463281. https://doi.org/10.1016/j.chroma.2022.463281

    Article  CAS  PubMed  Google Scholar 

  35. Chen Z, Yu C, Xi J, Tang S, Bao T, Zhang J (2019) A hybrid material prepared by controlled growth of a covalent organic framework on amino-modified MIL-68 for pipette tip solid-phase extraction of sulfonamides prior to their determination by hplc. Microchim Acta 186:393. https://doi.org/10.1007/s00604-019-3513-7

    Article  CAS  Google Scholar 

  36. Zhang J, Yu C, Chen Z, Luo X, Zhao H, Wu F (2021) Zeolitic imidazolate framework-8/ fluorinated graphene coated SiO2 composites for pipette tip solid-phase extraction of chlorophenols in environmental and food samples. Talanta 228:122229. https://doi.org/10.1016/j.talanta.2021.122229

    Article  CAS  PubMed  Google Scholar 

  37. Yu C, Wu F, Luo X, Zhang J (2021) Porphyrin-based covalent organic framework coated stainless steel fiber for solid-phase microextraction of polycyclic aromatic hydrocarbons in water and soil samples. Microchem J 168:106364. https://doi.org/10.1016/j.microc.2021.106364

    Article  CAS  Google Scholar 

  38. Yu C, Zhang J, Luo X, Zhang J (2023) Metal organic framework/covalent organic framework composite for solid-phase microextraction of polycyclic aromatic hydrocarbons in milk samples. Microchem J 187:108388. https://doi.org/10.1016/j.microc.2023.108388

    Article  CAS  Google Scholar 

  39. Xu L, Hu W, Wu F, Zhang J (2023) In situ growth of porous organic framework on iron wire for microextraction of polycyclic aromatic hydrocarbons. Talanta 264:124732. https://doi.org/10.1016/j.talanta.2023.124732

    Article  CAS  PubMed  Google Scholar 

  40. Zhang N, Su L, Man S, Lei X, Huang T, Zhu C, Zhang L, Wu X (2019) Task-specific solid-phase microextraction based on ionic liquid/polyhedral oligomeric silsesquioxane hybrid coating for sensitive analysis of polycyclic aromatic hydrocarbons by gas chromatography-mass spectrometry. J Chromatogr A 1598:49–57. https://doi.org/10.1016/j.chroma.2019.03.062

    Article  CAS  PubMed  Google Scholar 

  41. Zhao Y, Hu K, Yang C, Liu X, Li L, Li Z, Wang P, Zhang Z, Zhang S (2023) Covalent organic framework@Ti3C2Tx composite as solid phase microextraction coating for the determination of polycyclic aromatic hydrocarbons in honey samples. Anal Chim Acta 1237:340581. https://doi.org/10.1016/j.aca.2022.340581

    Article  CAS  PubMed  Google Scholar 

  42. Zhang S, Yang Q, Li Z, Wang W, Zang X, Wang C, Wang Z (2018) Solid phase microextraction of phthalic acid esters from vegetable oils using iron (III)-based metal-organic framework/graphene oxide coating. Food Chem 263:258–264. https://doi.org/10.1016/j.foodchem.2018.04.132

    Article  CAS  PubMed  Google Scholar 

  43. Wu YY, Yang CX, Yan XP (2014) Fabrication of metal-organic framework MIL-88B films on stainless steel fibers for solid-phase microextraction of polychlorinated biphenyls. J Chromatogr A 1334:1–8. https://doi.org/10.1016/j.chroma.2014.01.079

    Article  CAS  PubMed  Google Scholar 

  44. Wang Q, Chen L, Cui X, Zhang J, Wang Y, Yang X (2023) Determination of trace bisphenols in milk based on Fe3O4@NH2-MIL-88(Fe)@TpPa magnetic solid-phase extraction coupled with HPLC. Talanta 256:124268. https://doi.org/10.1016/j.talanta.2023.124268

    Article  CAS  PubMed  Google Scholar 

  45. Zango ZU, Jumbri K, Sambudi NS, Hanif Abu Bakar NH, Fathihah Abdullah NA, Basheer C, Saad B (2019) Removal of anthracene in water by MIL-88(Fe), NH2-MIL-88(Fe), and mixed-MIL-88(Fe) metal-organic frameworks. RSC Adv 9:41490–41501. https://doi.org/10.1039/c9ra08660a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ma M, Bétard A, Weber I, Al-Hokbany NS, Fischer RA, Metzler-Nolte N (2013) Iron-based metal-organic frameworks MIL-88B and NH2-MIL-88B: High quality microwave synthesis and solvent-induced lattice “breathing.” Cryst Growth Des 13:2286–2291. https://doi.org/10.1021/cg301738p

    Article  CAS  Google Scholar 

  47. Jia Y, Su H, Wang Z, Wong YE, Chen X, Wang M, Chan TD (2016) Metal-organic framework@microporous organic network as adsorbent for solid-phase microextraction. Anal Chem 88:9364–9367. https://doi.org/10.1021/acs.analchem.6b03156

    Article  CAS  PubMed  Google Scholar 

  48. Yu Q, Ma W, Zhang W, Chen H, Ding Q, Guo Y, Yang J, Zhang L (2021) In situ room-temperature rapidly fabricated imine-linked covalent organic framework coated fibers for efficient solid-phase microextraction of pyrethroids. Anal Chim Acta 1181:338886. https://doi.org/10.1016/j.aca.2021.338886

    Article  CAS  PubMed  Google Scholar 

  49. Vitaku E, Dichtel WR (2017) Synthesis of 2D imine-linked covalent organic frameworks through formal transimination reactions. J Am Chem Soc 139:12911–12914. https://doi.org/10.1021/jacs.7b06913

    Article  CAS  PubMed  Google Scholar 

  50. Guo X, Yin D, Khaing KK, Wang J, Luo Z, Zhang Y (2021) Construction of MOF/COF hybrids for boosting sunlight-induced fenton-like photocatalytic removal of organic pollutants. Inorg Chem 60:15557–15568. https://doi.org/10.1021/acs.inorgchem.1c02198

    Article  CAS  PubMed  Google Scholar 

  51. Kim SN, Park CG, Huh BK, Lee SH, Min CH, Lee YY, Kim YK, Park KH, Choy YB (2018) Metal-organic frameworks, NH2-MIL-88(Fe), as carriers for ophthalmic delivery of brimonidine. Acta Biomater 79:344–353. https://doi.org/10.1016/j.actbio.2018.08.023

    Article  CAS  PubMed  Google Scholar 

  52. Xie D, Ma Y, Gu Y, Zhou H, Zhang H, Wang G, Zhang Y, Zhao H (2017) Bifunctional NH2-MIL-88(Fe) metal-organic framework nanooctahedra for highly sensitive detection and efficient removal of arsenate in aqueous media. J Mater Chem A 5:23794–23804. https://doi.org/10.1039/c7ta07934f

    Article  CAS  Google Scholar 

  53. Yuan R, Yue C, Qiu J, Liu F, Li A (2019) Highly efficient sunlight-driven reduction of Cr(VI) by TiO2@NH2-MIL-88B(Fe) heterostructures under neutral conditions. Appl Catal, B 251:229–239. https://doi.org/10.1016/j.apcatb.2019.03.068

    Article  CAS  Google Scholar 

  54. Peng Y, Zhao M, Chen B, Zhang Z, Huang Y, Dai F, Lai Z, Cui X, Tan C, Zhang H (2018) Hybridization of MOFs and COFs: a new strategy for construction of MOF@COF core-shell hybrid materials. Adv Mater 30:1705454. https://doi.org/10.1002/adma.201705454

    Article  CAS  Google Scholar 

  55. El-Mahdy AFM, Kuo CH, Alshehri A, Young C, Yamauchi Y, Kim J, Kuo SW (2018) Strategic design of triphenylamine- and triphenyltriazine-based two-dimensional covalent organic frameworks for CO2 uptake and energy storage. J Mater Chem A 6:19532–19541. https://doi.org/10.1039/c8ta04781b

    Article  CAS  Google Scholar 

  56. Cui XY, Gu ZY, Jiang DQ, Li Y, Wang HF, Yan XP (2009) In situ hydrothermal growth of metal-organic framework 199 films on stainless steel fibers for solid-phase microextraction of gaseous benzene homologues. Anal Chem 81:9771–9777. https://doi.org/10.1021/ac901663x

    Article  CAS  PubMed  Google Scholar 

  57. Ma TT, Shen XF, Yang C, Qian HL, Pang YH, Yan XP (2019) Covalent immobilization of covalent organic framework on stainless steel wire for solid-phase microextraction GC-MS/MS determination of sixteen polycyclic aromatic hydrocarbons in grilled meat samples. Talanta 201:413–418. https://doi.org/10.1016/j.talanta.2019.04.031

    Article  CAS  PubMed  Google Scholar 

  58. Wang W, Wang J, Zhang S, Cui P, Wang C, Wang Z (2016) A novel schiff base network-1 nanocomposite coated fiber for solid-phase microextraction of phenols from honey samples. Talanta 161:22–30. https://doi.org/10.1016/j.talanta.2016.08.009

    Article  CAS  PubMed  Google Scholar 

  59. Zhang N, Lei X, Huang T, Su L, Zhang L, Xie Z, Wu X (2020) Guanidyl-functionalized polyhedral oligomeric silsesquioxane porous hybrid polymer coating for specific solid phase microextraction of phthalate esters in foodstuff. Chem Eng J 386:124003. https://doi.org/10.1016/j.cej.2019.124003

    Article  CAS  Google Scholar 

  60. Guo H, Chen G, Ma J, Jia Q (2018) A triazine based organic framework with micropores and mesopores for use in headspace solid phase microextraction of phthalate esters. Microchim Acta 186:4. https://doi.org/10.1007/s00604-018-3060-7

    Article  CAS  Google Scholar 

  61. Zhang X, Li D, Li M, Qin P, Zhu S, Gao Y, Mu M, Zhang N, Wang Y, Lu M (2022) Flower-like Co3O4/C3N5 composite as solid-phase microextraction coating for high-efficiency adsorption and preconcentration of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in water. Chem Eng J 443:136293. https://doi.org/10.1016/j.cej.2022.136293

    Article  CAS  Google Scholar 

  62. Sun M, Feng J, Han S, Ji X, Li C, Feng J, Sun H, Fan J (2021) Poly(ionic liquid)-hybridized silica aerogel for solid-phase microextraction of polycyclic aromatic hydrocarbons prior to gas chromatography-flame ionization detection. Microchim Acta 188:96. https://doi.org/10.1007/s00604-021-04730-3

    Article  CAS  Google Scholar 

  63. Zhu W, Zhang J, Zhang X, Han L, Qin P, Tian S, Zhou Q, Zhang X, Lu M (2020) Preparation of Al-doped mesoporous crystalline material-41 as fiber coating material for headspace solid-phase microextraction of polycyclic aromatic hydrocarbons from human urine. J Chromatogr A 1626:461354. https://doi.org/10.1016/j.chroma.2020.461354

    Article  CAS  PubMed  Google Scholar 

  64. Hajializadeh A, Ansari M, Foroughi MM, Kazemipour M (2020) Ultrasonic assisted synthesis of a novel ternary nanocomposite based on carbon nanotubes/zeolitic imidazolate framework-67/polyaniline for solid-phase microextraction of organic pollutants. Microchem J 157:105008. https://doi.org/10.1016/j.microc.2020.105008

    Article  CAS  Google Scholar 

  65. Yang X, Zhang S, Wang J, Wang W, Li J, Chen J, Zhao Y, Wang C, Wang Z (2020) Modulated construction of imine-based covalent organic frameworks for efficient adsorption of polycyclic aromatic hydrocarbons from honey samples. Anal Chim Acta 1134:50–57. https://doi.org/10.1016/j.aca.2020.07.072

    Article  CAS  PubMed  Google Scholar 

  66. Bianchin JN, Nardini G, Merib J, Dias AN, Martendal E, Carasek E (2012) Simultaneous determination of polycyclic aromatic hydrocarbons and benzene, toluene, ethylbenzene and xylene in water samples using a new sampling strategy combining different extraction modes and temperatures in a single extraction solid-phase microextraction-gas chromatography-mass spectrometry procedure. J Chromatogr A 1233:22–29. https://doi.org/10.1016/j.chroma.2012.02.022

    Article  CAS  PubMed  Google Scholar 

  67. Liu H, Ran F, Tao C, Zhao M, Jia Y, Guo Y (2016) A highly thermal stable solid phase microextraction fiber prepared by an inorganic binder. Anal Chim Acta 918:35–42. https://doi.org/10.1016/j.aca.2016.03.007

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81503036), National Key Research and Development Program of China (2022YFC3902702), Nature Science Foundation of Hubei Province (2022CFB267), the Open Project of Key Laboratory of Green Chemical Engineering Process of Ministry of Education (GCX202104), Special Projects of the Central Government in Guidance of Local Science and Technology Development in Hubei Province (2020ZYYD040), and Postgraduate Innovation Foundation from Wuhan Institute of Technology (CX2022445).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 561 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Hu, W., Luo, X. et al. Covalent organic framework in situ grown on the metal–organic framework as fiber coating for solid-phase microextraction of polycyclic aromatic hydrocarbons in tea. Microchim Acta 190, 344 (2023). https://doi.org/10.1007/s00604-023-05915-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05915-8

Keywords

Navigation