Skip to main content

Advertisement

Log in

Paper-based electrochemical biosensors for the diagnosis of viral diseases

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Paper-based electrochemical analytical devices (ePADs) have gained significant interest as promising analytical units in recent years because they can be fabricated in simple ways, are low-cost, portable, and disposable platforms that can be applied in various fields. In this sense, paper-based electrochemical biosensors are attractive analytical devices since they can promote diagnose several diseases and potentially allow decentralized analysis. Electrochemical biosensors are versatile, as the measured signal can be improved by using mainly molecular technologies and nanomaterials to attach biomolecules, resulting in an increase in their sensitivity and selectivity. Additionally, they can be implemented in microfluidic devices that drive and control the flow without external pumping and store reagents, and improve the mass transport of analytes, increasing sensor sensitivity. In this review, we focus on the recent developments in electrochemical paper-based devices for viruses’ detection, including COVID-19, Dengue, Zika, Hepatitis, Ebola, AIDS, and Influenza, among others, which have caused impacts on people’s health, especially in places with scarce resources. Also, we discuss the advantages and disadvantages of the main electrode’s fabrication methods, device designs, and biomolecule immobilization strategies. Finally, the perspectives and challenges that need to be overcome to further advance paper-based electrochemical biosensors’ applications are critically presented.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Channon RB, Yang Y, Feibelman KM et al (2018) Development of an Electrochemical Paper-Based Analytical Device for Trace Detection of Virus Particles. Anal Chem 90:7777–7783. https://doi.org/10.1021/acs.analchem.8b02042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Morens DM, Fauci AS (2020) Emerging Pandemic Diseases: How We Got to COVID-19. Cell 182:1077–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. World Health Organization (WHO) (2023) WHO Coronavirus (COVID-19) Dashboard. In: https://covid19.who.int/

  4. Beduk T, Beduk D, de Oliveira Filho JI et al (2021) Rapid Point-of-Care COVID-19 Diagnosis with a Gold-Nanoarchitecture-Assisted Laser-Scribed Graphene Biosensor. Anal Chem 93:8585–8594. https://doi.org/10.1021/acs.analchem.1c01444

    Article  CAS  PubMed  Google Scholar 

  5. Lukas H, Xu C, Yu Y, Gao W (2020) Emerging telemedicine tools for remote covid-19 diagnosis, monitoring, and management. ACS Nano 14:16180–16193. https://doi.org/10.1021/acsnano.0c08494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ozer T, Henry CS (2021) Paper-based analytical devices for virus detection: Recent strategies for current and future pandemics. Trends Analyt Chem 144:116424. https://doi.org/10.1016/j.trac.2021.116424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Manring N, Ahmed MMN, Tenhoff N et al (2022) Recent Advances in Electrochemical Tools for Virus Detection. Anal Chem 94:7149–7157. https://doi.org/10.1021/acs.analchem.1c05358

    Article  CAS  PubMed  Google Scholar 

  8. Goud KY, Reddy KK, Khorshed A et al (2021) Electrochemical diagnostics of infectious viral diseases: Trends and challenges. Biosens Bioelectron 180:113112. https://doi.org/10.1016/j.bios.2021.113112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sampaio I, Quatroni FD, Yamauti Costa JN, Zucolotto V (2022) Electrochemical detection of Zika and Dengue infections using a single chip. Biosens Bioelectron 216:114630. https://doi.org/10.1016/j.bios.2022.114630

    Article  CAS  PubMed  Google Scholar 

  10. Zhu H, Fohlerová Z, Pekárek J et al (2020) Recent advances in lab-on-a-chip technologies for viral diagnosis. Biosens Bioelectron 153:112041. https://doi.org/10.1016/j.bios.2020.112041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Puiu M, Mirceski V, Bala C (2021) Paper-based diagnostic platforms and devices. Curr Opin Electrochem 27:100726. https://doi.org/10.1016/j.coelec.2021.100726

    Article  CAS  Google Scholar 

  12. Sher M, Zhuang R, Demirci U, Asghar W (2017) Paper-based analytical devices for clinical diagnosis: recent advances in the fabrication techniques and sensing mechanisms. Expert Rev Mol Diagn 17:351–366. https://doi.org/10.1080/14737159.2017.1285228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Noviana E, McCord C, Clark K et al (2019) Electrochemical Paper-Based Devices: Sensing Approaches and Progress Toward Practical Applications. Lab Chip 20:9–34. https://doi.org/10.1039/C9LC00903E

    Article  PubMed  Google Scholar 

  14. Ongaro AE, Ndlovu Z, Sollier E et al (2022) Engineering a sustainable future for point-of-care diagnostics and single-use microfluidic devices. Lab Chip 22:3122–3137. https://doi.org/10.1039/D2LC00380E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Paschoalino WJ, Kogikoski S, Barragan JTC et al (2019) Emerging Considerations for the Future Development of Electrochemical Paper-Based Analytical Devices. ChemElectroChem 6:10–30. https://doi.org/10.1002/celc.201800677

    Article  CAS  Google Scholar 

  16. Alafeef M, Dighe K, Moitra P, Pan D (2020) Rapid, Ultrasensitive, and Quantitative Detection of SARS-CoV-2 Using Antisense Oligonucleotides Directed Electrochemical Biosensor Chip. ACS Nano 14:17028–17045. https://doi.org/10.1021/acsnano.0c06392

    Article  CAS  PubMed  Google Scholar 

  17. da Silva ETSG, Souto DEP, Barragan JTC et al (2017) Electrochemical Biosensors in Point-of-Care Devices: Recent Advances and Future Trends. ChemElectroChem 4:778–794. https://doi.org/10.1002/celc.201600758

    Article  CAS  Google Scholar 

  18. Pinheiro T, Cardoso AR, Sousa CEA et al (2021) Paper-Based Biosensors for COVID-19: A Review of Innovative Tools for Controlling the Pandemic. ACS Omega 6:29268–29290. https://doi.org/10.1021/acsomega.1c04012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brazaca LC, dos Santos PL, de Oliveira PR et al (2021) Biosensing strategies for the electrochemical detection of viruses and viral diseases – A review. Anal Chim Acta 1159:338384. https://doi.org/10.1016/j.aca.2021.338384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ribeiro BV, Cordeiro TAR, Freitas GR OE et al (2020) Biosensors for the detection of respiratory viruses: A review. Talanta Open 2:100007. https://doi.org/10.1016/j.talo.2020.100007

    Article  PubMed  PubMed Central  Google Scholar 

  21. de Eguilaz MR, Cumba LR, Forster RJ (2020) Electrochemical detection of viruses and antibodies: A mini review. Electrochem Commun 116:106762. https://doi.org/10.1016/j.elecom.2020.106762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Colozza N, Caratelli V, Moscone D, Arduini F (2021) Origami paper-based electrochemical (Bio)sensors: State of the art and perspective. Biosensors 11:328. https://doi.org/10.3390/bios11090328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee VBC, Mohd-Naim NF, Tamiya E, Ahmed MU (2018) Trends in Paper-based Electrochemical Biosensors: From Design to Application. Anal Sci 34:7–18. https://doi.org/10.2116/analsci.34.7

    Article  CAS  PubMed  Google Scholar 

  24. Stefano JS, Orzari LO, Silva-neto HA et al (2022) ScienceDirect Electrochemistry Different approaches for fabrication of low-cost electrochemical sensors. Curr Opin Electrochem 32:100893. https://doi.org/10.1016/j.coelec.2021.100893

    Article  CAS  Google Scholar 

  25. Ataide VN, Mendes LF, Gama LILM et al (2020) Electrochemical paper-based analytical devices: ten years of development. Anal Methods 12:1030–1054. https://doi.org/10.1039/C9AY02350J

    Article  Google Scholar 

  26. Srisomwat C, Yakoh A, Chuaypen N et al (2021) Amplification-free DNA Sensor for the One-Step Detection of the Hepatitis B Virus Using an Automated Paper-Based Lateral Flow Electrochemical Device. Anal Chem 93:2879–2887. https://doi.org/10.1021/acs.analchem.0c04283

    Article  CAS  PubMed  Google Scholar 

  27. Bhardwaj J, Sharma A, Jang J (2019) Vertical flow-based paper immunosensor for rapid electrochemical and colorimetric detection of influenza virus using a different pore size sample pad. Biosens Bioelectron 126:36–43. https://doi.org/10.1016/j.bios.2018.10.008

    Article  CAS  PubMed  Google Scholar 

  28. Pradela-Filho LA, Gongoni JLM, Arantes IVS et al (2023) Controlling the Inkjet Printing Process for Electrochemical (Bio)Sensors. Adv Mater Technol 8:2201729. https://doi.org/10.1002/admt.202201729

    Article  CAS  Google Scholar 

  29. Ataide VN, Arantes IVS, Mendes LF et al (2022) Review—A Pencil Drawing Overview: From Graphite to Electrochemical Sensors/Biosensors Applications. J Electrochem Soc 169:047524. https://doi.org/10.1149/1945-7111/ac68a0

    Article  CAS  Google Scholar 

  30. Ameku WA, Gonçalves JM, Ataide VN et al (2021) Combined Colorimetric and Electrochemical Measurement Paper-Based Device for Chemometric Proof-of-Concept Analysis of Cocaine Samples. ACS Omega 6:594–605. https://doi.org/10.1021/acsomega.0c05077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Arantes IVS, Ataide VN, Ameku WA et al (2023) Laser-induced fabrication of gold nanoparticles onto paper substrates and their application on paper-based electroanalytical devices. Sensors & Diagnostics 2:111–121. https://doi.org/10.1039/D2SD00176D

  32. Mendes LF, de Siervo A, Reis de Araujo W, Longo Cesar Paixão TR (2020) Reagentless fabrication of a porous graphene-like electrochemical device from phenolic paper using laser-scribing. Carbon 159:110–118. https://doi.org/10.1016/j.carbon.2019.12.016

    Article  CAS  Google Scholar 

  33. de Araujo WR, Frasson CMR, Ameku WA et al (2017) Single-Step Reagentless Laser Scribing Fabrication of Electrochemical Paper-Based Analytical Devices. Angew Chem Int Ed 56:15113–15117. https://doi.org/10.1002/anie.201708527

    Article  CAS  Google Scholar 

  34. Mendes LF, Pradela-Filho LA, Paixão TRLC (2022) Polyimide adhesive tapes as a versatile and disposable substrate to produce CO2 laser-induced carbon sensors for batch and microfluidic analysis. Microchem J 182:107893. https://doi.org/10.1016/j.microc.2022.107893

    Article  CAS  Google Scholar 

  35. Ameku WA, Negahdary M, Lima IS et al (2022) Laser-Scribed Graphene-Based Electrochemical Sensors: A Review. Chemosensors 10:505. https://doi.org/10.3390/chemosensors10120505

    Article  CAS  Google Scholar 

  36. Torrente-Rodríguez RM, Lukas H, Tu J et al (2020) SARS-CoV-2 RapidPlex: A Graphene-Based Multiplexed Telemedicine Platform for Rapid and Low-Cost COVID-19 Diagnosis and Monitoring. Matter 3:1981–1998. https://doi.org/10.1016/j.matt.2020.09.027

    Article  PubMed  PubMed Central  Google Scholar 

  37. Oliveira ME, Lopes BV, Rossato JHH et al (2022) Electrochemical Biosensor Based on Laser-Induced Graphene for COVID-19 Diagnosing: Rapid and Low-Cost Detection of SARS-CoV-2 Biomarker Antibodies. Surfaces 5:187–201. https://doi.org/10.3390/surfaces5010012

    Article  CAS  Google Scholar 

  38. Boonkaew S, Yakoh A, Chuaypen N et al (2021) An automated fast-flow/delayed paper-based platform for the simultaneous electrochemical detection of hepatitis B virus and hepatitis C virus core antigen. Biosens Bioelectron 193:113543. https://doi.org/10.1016/j.bios.2021.113543

    Article  CAS  PubMed  Google Scholar 

  39. Srisomwat C, Teengam P, Chuaypen N et al (2020) Pop-up paper electrochemical device for label-free hepatitis B virus DNA detection. Sens Actuators B 316:128077. https://doi.org/10.1016/j.snb.2020.128077

    Article  CAS  Google Scholar 

  40. Ferreira PC, Ataíde VN, Silva Chagas CL et al (2019) Wearable electrochemical sensors for forensic and clinical applications. TrAC Trends Anal Chem 119:115622. https://doi.org/10.1016/j.trac.2019.115622

    Article  CAS  Google Scholar 

  41. Pradela-Filho LA, Andreotti IAA, Carvalho JHS et al (2020) Glass varnish-based carbon conductive ink: A new way to produce disposable electrochemical sensors. Sens Actuators B 305:127433. https://doi.org/10.1016/j.snb.2019.127433

    Article  CAS  Google Scholar 

  42. Pradela-Filho LA, Araújo DAG, Takeuchi RM, Santos AL (2017) Nail polish and carbon powder: An attractive mixture to prepare paper-based electrodes. Electrochim Acta 258:786–792. https://doi.org/10.1016/j.electacta.2017.11.127

    Article  CAS  Google Scholar 

  43. Castro LF, Silva-Neto HA, Sousa LR et al (2022) Silicone glue-based graphite ink incorporated on paper platform as an affordable approach to construct stable electrochemical sensors. Talanta 251:123812. https://doi.org/10.1016/j.talanta.2022.123812

    Article  CAS  PubMed  Google Scholar 

  44. Melo Henrique J, Rocha Camargo J, Gabriel de Oliveira G et al (2021) Disposable electrochemical sensor based on shellac and graphite for sulfamethoxazole detection. Microchem J 170:106701. https://doi.org/10.1016/j.microc.2021.106701

    Article  CAS  Google Scholar 

  45. Santhiago M, Corrêa CC, Bernardes JS et al (2017) Flexible and Foldable Fully-Printed Carbon Black Conductive Nanostructures on Paper for High-Performance Electronic, Electrochemical, and Wearable Devices. ACS Appl Mater Interfaces 9:24365–24372. https://doi.org/10.1021/acsami.7b06598

    Article  CAS  PubMed  Google Scholar 

  46. Camargo JR, Orzari LO, Araújo DAG et al (2021) Development of conductive inks for electrochemical sensors and biosensors. Microchem J 164:105998. https://doi.org/10.1016/j.microc.2021.105998

    Article  CAS  Google Scholar 

  47. Carvalho JHS, Stefano JS, Brazaca LC, Janegitz BC (2023) New conductive ink based on carbon nanotubes and glass varnish for the construction of a disposable electrochemical sensor. J Electroanal Chem 937:117428. https://doi.org/10.1016/j.jelechem.2023.117428

    Article  CAS  Google Scholar 

  48. Lisboa TP, de Faria LV, Alves GF et al (2021) Development of paper devices with conductive inks for sulfanilamide electrochemical determination in milk, synthetic urine, and environmental and pharmaceutical samples. J Solid State Electrochem 25:2301–2308. https://doi.org/10.1007/s10008-021-05002-z

    Article  CAS  Google Scholar 

  49. Singhal C, Bruno JG, Kaushal A, Sharma TK (2021) Recent Advances and a Roadmap to Aptamer-Based Sensors for Bloodstream Infections. ACS Appl Bio Mater 4:3962–3984. https://doi.org/10.1021/acsabm.0c01358

    Article  CAS  PubMed  Google Scholar 

  50. Singhal C, Shukla SK, Jain A et al (2020) Electrochemical Multiplexed Paper Nanosensor for Specific Dengue Serotype Detection Predicting Pervasiveness of DHF/DSS. ACS Biomater Sci Eng 6:5886–5894. https://doi.org/10.1021/acsbiomaterials.0c00976

    Article  CAS  PubMed  Google Scholar 

  51. Negahdary M, Angnes L (2022) An aptasensing platform for detection of heat shock protein 70 kDa (HSP70) using a modified gold electrode with lady fern-like gold (LFG) nanostructure. Talanta 246:123511. https://doi.org/10.1016/j.talanta.2022.123511

    Article  CAS  PubMed  Google Scholar 

  52. Grabarek Z, Gergely J (1990) Zero-Length Crosslinking Procedure with the Use of Active Esters’. Anal Biochem 185:131–135. https://doi.org/10.1016/0003-2697(90)90267-D

    Article  CAS  PubMed  Google Scholar 

  53. Cinti S, Proietti E, Casotto F et al (2018) Paper-Based Strips for the Electrochemical Detection of Single and Double Stranded DNA. Anal Chem 90:13680–13686. https://doi.org/10.1021/acs.analchem.8b04052

    Article  CAS  PubMed  Google Scholar 

  54. Pradela-Filho LA, Araújo DAG, Takeuchi RM et al (2021) Thermoplastic electrodes as a new electrochemical platform coupled to microfluidic devices for tryptamine determination. Anal Chim Acta 1147:116–123. https://doi.org/10.1016/j.aca.2020.12.059

    Article  CAS  PubMed  Google Scholar 

  55. Pradela-Filho LA, Noviana E, Araújo DAG et al (2020) Rapid Analysis in Continuous-Flow Electrochemical Paper-Based Analytical Devices. ACS Sens 5:274–281. https://doi.org/10.1021/acssensors.9b02298

    Article  CAS  PubMed  Google Scholar 

  56. Cincotto FH, Fava EL, Moraes FC et al (2019) A new disposable microfluidic electrochemical paper-based device for the simultaneous determination of clinical biomarkers. Talanta 195:62–68. https://doi.org/10.1016/j.talanta.2018.11.022

    Article  CAS  PubMed  Google Scholar 

  57. Adkins JA, Noviana E, Henry CS (2016) Development of a Quasi-Steady Flow Electrochemical Paper-Based Analytical Device. Anal Chem 88:10639–10647. https://doi.org/10.1021/acs.analchem.6b03010

    Article  CAS  PubMed  Google Scholar 

  58. Lewińska I, Speichert M, Granica M, Tymecki Ł (2021) Colorimetric point-of-care paper-based sensors for urinary creatinine with smartphone readout. Sens Actuators B 340:129915. https://doi.org/10.1016/j.snb.2021.129915

    Article  CAS  Google Scholar 

  59. Pradela-Filho LA, Veloso WB, Arantes IVS et al (2023) Paper-based analytical devices for point-of-need applications. Mikrochim Acta 190:179. https://doi.org/10.1007/s00604-023-05764-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gongoni JLM, Filho LAP, De Farias DM et al (2023) Modulating the Electrochemical Response of Eco-Friendly Laser-Pyrolyzed Paper Sensors Applied to Nitrite Determination. ChemElectroChem 10:e202201018. https://doi.org/10.1002/celc.202201018

    Article  CAS  Google Scholar 

  61. Dias AA, Cardoso TMG, Chagas CLS et al (2018) Detection of Analgesics and Sedation Drugs in Whiskey Using Electrochemical Paper-based Analytical Devices. Electroanalysis 30:2250–2257. https://doi.org/10.1002/elan.201800308

    Article  CAS  Google Scholar 

  62. Silva-Neto HA, Duarte-Junior GF, Rocha DS et al (2023) Recycling 3D Printed Residues for the Development of Disposable Paper-Based Electrochemical Sensors. ACS Appl Mater Interfaces 15:14111–14121. https://doi.org/10.1021/acsami.3c00370

    Article  CAS  Google Scholar 

  63. Ichzan AM, Hwang SH, Cho H et al (2021) Solid-phase recombinase polymerase amplification using an extremely low concentration of a solution primer for sensitive electrochemical detection of hepatitis B viral DNA. Biosens Bioelectron 179:113065. https://doi.org/10.1016/j.bios.2021.113065

    Article  CAS  PubMed  Google Scholar 

  64. Kuswandi B, Hidayat MA, Noviana E (2022) Paper-Based Electrochemical Biosensors for Food Safety Analysis. Biosensors 12:1088. https://doi.org/10.3390/bios12121088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kuswandi B, Hidayat MA, Noviana E (2022) Paper-based sensors for rapid important biomarkers detection. Biosens. Bioelectron 12:100246. https://doi.org/10.1016/j.biosx.2022.100246

    Article  CAS  Google Scholar 

  66. Center of Disease Control and Prevention (2022) West Nile Virus. In: https://www.cdc.gov/westnile/index.html.

  67. Li X, Qin Z, Fu H et al (2021) Enhancing the performance of paper-based electrochemical impedance spectroscopy nanobiosensors: An experimental approach. Biosens Bioelectron 177:112672. https://doi.org/10.1016/j.bios.2020.112672

    Article  CAS  PubMed  Google Scholar 

  68. Ameku WA, Provance DW, Morel CM, De-Simone SG (2022) Rapid Detection of Anti-SARS-CoV-2 Antibodies with a Screen-Printed Electrode Modified with a Spike Glycoprotein Epitope. Biosensors 12:272. https://doi.org/10.3390/bios12050272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhao C, Liu X (2016) A portable paper-based microfluidic platform for multiplexed electrochemical detection of human immunodeficiency virus and hepatitis C virus antibodies in serum. Biomicrofluidics 10:024119. https://doi.org/10.1063/1.4945311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yakoh A, Pimpitak U, Rengpipat S et al (2021) Paper-based electrochemical biosensor for diagnosing COVID-19: Detection of SARS-CoV-2 antibodies and antigen. Biosens Bioelectron 176:112912. https://doi.org/10.1016/j.bios.2020.112912

    Article  CAS  PubMed  Google Scholar 

  71. Lu Q, Su T, Shang Z et al (2021) Flexible paper-based Ni-MOF composite/AuNPs/CNTs film electrode for HIV DNA detection. Biosens Bioelectron 184:113229. https://doi.org/10.1016/j.bios.2021.113229

    Article  CAS  PubMed  Google Scholar 

  72. Akkapinyo C, Khownarumit P, Waraho-Zhmayev D, Poo-arporn RP (2020) Development of a multiplex immunochromatographic strip test and ultrasensitive electrochemical immunosensor for hepatitis B virus screening. Anal Chim Acta 1095:162–171. https://doi.org/10.1016/j.aca.2019.10.016

    Article  CAS  PubMed  Google Scholar 

  73. Narang J, Singhal C, Mathur A et al (2018) Portable bioactive paper based genosensor incorporated with Zn-Ag nanoblooms for herpes detection at the point-of-care. Int J Biol Macromol 107:2559–2565. https://doi.org/10.1016/j.ijbiomac.2017.10.146

    Article  CAS  PubMed  Google Scholar 

  74. Singhal C, Dubey A, Mathur A et al (2018) Paper based DNA biosensor for detection of chikungunya virus using gold shells coated magnetic nanocubes. Process Biochem 74:35–42. https://doi.org/10.1016/j.procbio.2018.08.020

    Article  CAS  Google Scholar 

  75. Devarakonda S, Singh R, Bhardwaj J, Jang J (2017) Cost-effective and handmade paper-based immunosensing device for electrochemical detection of influenza virus. Sensors 17:2597. https://doi.org/10.3390/s17112597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bhardwaj J, Kim MW, Jang J (2020) Rapid Airborne Influenza Virus Quantification Using an Antibody-Based Electrochemical Paper Sensor and Electrostatic Particle Concentrator. Environ Sci Technol 54:10700–10712. https://doi.org/10.1021/acs.est.0c00441

    Article  CAS  PubMed  Google Scholar 

  77. Bhardwaj J, Ngo ND, Lee J, Jang J (2023) High enrichment and near real-time quantification of airborne viruses using a wet-paper-based electrochemical immunosensor under an electrostatic field. J Hazard Mater 442:130006. https://doi.org/10.1016/j.jhazmat.2022.130006

    Article  CAS  PubMed  Google Scholar 

  78. Shi D, Zhang C, Li X, Yuan J (2023) An electrochemical paper-based hydrogel immunosensor to monitor serum cytokine for predicting the severity of COVID-19 patients. Biosens Bioelectron 220:114898. https://doi.org/10.1016/j.bios.2022.114898

    Article  CAS  PubMed  Google Scholar 

  79. Bishoyi A, Alam MA, Hasan MR et al (2022) Cyclic Voltammetric-Paper-Based Genosensor for Detection of the Target DNA of Zika Virus. Micromachines 13:2037. https://doi.org/10.3390/mi13122037

    Article  PubMed  PubMed Central  Google Scholar 

  80. Li X, Scida K, Crooks RM (2015) Detection of Hepatitis B Virus DNA with a Paper Electrochemical Sensor. Anal Chem 87:9009–9015. https://doi.org/10.1021/acs.analchem.5b02210

    Article  CAS  PubMed  Google Scholar 

  81. Hernández-Rodríguez JF, Rojas D, Escarpa A (2021) Electrochemical Sensing Directions for Next-Generation Healthcare: Trends, Challenges, and Frontiers. Anal Chem 93:167–183

    Article  PubMed  Google Scholar 

  82. Windmiller JR, Wang J (2013) Wearable Electrochemical Sensors and Biosensors: A Review. Electroanalysis 25:29–46. https://doi.org/10.1002/elan.201200349

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from São Paulo Research Foundation - FAPESP (Grant numbers: 2021/00205-8, 2019/22126–2, 2018/08782-1, 2018/16896–7, 2018/14462-0, 2017/13137-5, and 2014/50867-3) and from to the National Council for Research – CNPq (Grant numbers: 302839/2020-8, 311847-2018-8 and 465389/2014–7). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vanessa N. Ataide or Lúcio Angnes.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ataide, V.N., Pradela-Filho, L.A., Ameku, W.A. et al. Paper-based electrochemical biosensors for the diagnosis of viral diseases. Microchim Acta 190, 276 (2023). https://doi.org/10.1007/s00604-023-05856-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05856-2

Keywords

Navigation