Skip to main content
Log in

A miniaturized analytical system with packed epoxy-functionalized mesoporous organosilica for copper determination using a customized Android-based software

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A smartphone-assisted determination of copper ions is introduced by using a down-scaled microfluidic mixer. The system was coupled with a micro-column packed with a periodic mesoporous organosilica (PMO) material for preconcentration of copper ions. Copper ions were reduced to Cu(I) on-chip to selectively form an orange-colored complex with neocuproine. A novel Android-based software was made to determine the color change of the adsorbent by analyzing red-green-blue (RGB) components of images from the packed PMO material. Four porous framework materials with high porosity and chemical stability were synthesized and compared for the extraction of the Cu-neocuproine complex. The main parameters influencing the complex extraction efficiency were optimized. The analytical performance of the method showed limit of detection and quantification of 0.2 μg L−1 and 0.5 μg L−1, respectively. The accuracy and precision of the method were determined as recovery > 92% and relative standard deviations < 5.2% at medium concentration level (n = 5). Due to accumulation of the retained analyte in a single point and elimination of the stripping step, the RGB-based method showed sensitivity and precision higher than inductively coupled plasma-atomic emission spectrometry (ICP-AES) for determination of copper ions. To investigate the applicability of the method, six different water samples were analyzed. The t-test on the data showed that the method has no significant difference when compared with ICP-AES determination.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data available within the article or its supplementary materials.

References

  1. de Moraes NC, da Silva ENT, Petroni JM, Ferreira VS, Lucca BG (2020) Design of novel, simple, and inexpensive 3D printing-based miniaturized electrochemical platform containing embedded disposable detector for analytical applications. Electrophoresis 41(5-6):278–286. https://doi.org/10.1002/elps.201900270

    Article  CAS  PubMed  Google Scholar 

  2. Shigemori H, Maejima K, Shibata H, Hiruta Y, Citterio D (2023) Evaluation of cellophane as platform for colorimetric assays on microfluidic analytical devices. Microchim Acta 190(2):48. https://doi.org/10.1007/s00604-022-05622-w

    Article  CAS  Google Scholar 

  3. Zhu Y-L, Wang J-K, Chen Z-P, Zhao Y-J, Yu R-Q (2023) Ultrasensitive detection of multiple cancer biomarkers by a triple cascade amplification strategy in combination with single particle inductively coupled plasma mass spectrometry. Microchim Acta 190(1):20. https://doi.org/10.1007/s00604-022-05604-y

    Article  CAS  Google Scholar 

  4. Chen B, Hu B, He M, Huang Q, Zhang Y, Zhang X (2013) Speciation of selenium in cells by HPLC-ICP-MS after (on-chip) magnetic solid phase extraction. J Anal At Spectrom 28(3):334–343. https://doi.org/10.1039/C2JA30280B

    Article  Google Scholar 

  5. Huang Y, Peng J, Huang X (2019) Allylthiourea functionalized magnetic adsorbent for the extraction of cadmium, copper and lead ions prior to their determination by atomic absorption spectrometry. Microchim Acta 186:1–8. https://doi.org/10.1007/s00604-018-3101-2

    Article  CAS  Google Scholar 

  6. Lin Y, Gritsenko D, Feng S, Teh YC, Lu X, Xu J (2016) Detection of heavy metal by paper-based microfluidics. Biosens Bioelectron 83:256–266. https://doi.org/10.1016/j.bios.2016.04.061

    Article  CAS  PubMed  Google Scholar 

  7. Li M, Cao R, Nilghaz A, Guan L, Zhang X, Shen W (2015) “Periodic-table-style” paper device for monitoring heavy metals in water. Anal Chem 87(5):2555–2559. https://doi.org/10.1016/j.aca.2019.09.071

    Article  CAS  PubMed  Google Scholar 

  8. Uddin MJ, Bhuiyan NH, Hong JH, Shim JS (2021) Smartphone-based fully automated optofluidic device with laser irradiation-induced image whitening. Anal Chem 93(16):6394–6402. https://doi.org/10.1021/acs.analchem.0c05387

    Article  CAS  PubMed  Google Scholar 

  9. Tsagkaris A, Migliorelli D, Uttl L, Filippini D, Pulkrabova J, Hajslova J (2021) A microfluidic paper-based analytical device (μPAD) with smartphone readout for chlorpyrifos-oxon screening in human serum. Talanta 222:121535. https://doi.org/10.1016/j.talanta.2020.121535

    Article  CAS  PubMed  Google Scholar 

  10. Soares RR, Akhtar AS, Pinto IF, Lapins N, Barrett D, Sandh G, Yin X, Pelechano V, Russom A (2021) Sample-to-answer COVID-19 nucleic acid testing using a low-cost centrifugal microfluidic platform with bead-based signal enhancement and smartphone read-out. Lab Chip 93:2932–2944. https://doi.org/10.1039/D1LC00266J

    Article  Google Scholar 

  11. Mukherjee S, Shah M, Chaudhari K, Jana A, Sudhakar C, Srikrishnarka P, Islam MR, Philip L, Pradeep T (2020) Smartphone-based fluoride-specific sensor for rapid and affordable colorimetric detection and precise quantification at sub-ppm levels for field applications. ACS Omega 5(39):25253–25263. https://doi.org/10.1021/acsomega.0c03465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang H, Yang L, Chu S, Liu B, Zhang Q, Zou L, Yu S, Jiang C (2019) Semiquantitative visual detection of lead ions with a smartphone via a colorimetric paper-based analytical device. Anal Chem 91(14):9292–9299. https://doi.org/10.1021/acs.analchem.9b02297

    Article  CAS  PubMed  Google Scholar 

  13. De Jong J, Lammertink RG, Wessling M (2006) Membranes and microfluidics: a review. Lab Chip 6(9):1125–1139. https://doi.org/10.1039/B603275C

    Article  PubMed  Google Scholar 

  14. Alizadeh T, Mousavi Z (2022) Molecularly imprinted polymer specific to creatinine complex with copper (II) ions for voltammetric determination of creatinine. Microchim Acta 189(10):393. https://doi.org/10.1007/s00604-022-05470-8

    Article  CAS  Google Scholar 

  15. Wasay S, Puri B, Haq I (1990) Removal of trace heavy metals by metal chelates. Int J Environ Sci 36(3):191–198. https://doi.org/10.1080/00207239008710595

    Article  CAS  Google Scholar 

  16. Wasay S, Puri B (1993) Removal of trace heavy metals by solid-liquid separation. Int J Environ Sci 44(2-3):181–188. https://doi.org/10.1080/00207239308710859

    Article  CAS  Google Scholar 

  17. Devi PR, Naidu GRK (1990) Enrichment of trace metals in water on activated carbon. Analyst 115(11):1469–1471. https://doi.org/10.1039/AN9901501469

    Article  CAS  Google Scholar 

  18. Ashtari P, Wang K, Yang X, Huang S, Yamini Y (2005) Novel separation and preconcentration of trace amounts of copper (II) in water samples based on neocuproine modified magnetic microparticles. Anal Chim Acta 550(1-2):18–23. https://doi.org/10.1016/j.aca.2005.06.048

    Article  CAS  Google Scholar 

  19. Smith GF, McCurdy WH (1952) 2,9-Dimethyl-1,10-phenanthroline. Anal Chem 24(2):371–373. https://doi.org/10.1021/ac60062a029

    Article  CAS  Google Scholar 

  20. Halko R, Procházková S, Okenicová L, Hutta M, Božek P (2014) Determination of copper in human urine by RP-LC after pre-column derivatization with neocuproine and use of monolithic column. Chromatographia 77(15-16):1019–1025. https://doi.org/10.1007/s10337-014-2652-6

    Article  CAS  Google Scholar 

  21. Marczenko Z, Balcerzak M (2000) Chapter 19 - Copper. In: Marczenko Z, Balcerzak M (eds) Analytical Spectroscopy Library, vol 10. Elsevier, pp 177–188. https://doi.org/10.1016/S0926-4345(00)80083-8

    Chapter  Google Scholar 

  22. Shrivas K (2010) Monitoring of copper level in water and soil samples by using liquid–liquid extraction. Environ Monit Assess 168(1-4):315–319. https://doi.org/10.1007/s10661-009-1115-2

    Article  CAS  PubMed  Google Scholar 

  23. Akhond M, Absalan G, Pourshamsi T, Ramezani AM (2016) Gas-assisted dispersive liquid-phase microextraction using ionic liquid as extracting solvent for spectrophotometric speciation of copper. Talanta 154:461–466. https://doi.org/10.1016/j.talanta.2016.04.001

    Article  CAS  PubMed  Google Scholar 

  24. Yamini Y, Tamaddon A (1999) Solid-phase extraction and spectrophotometric determination of trace amounts of copper in water samples. Talanta 49(1):119–124. https://doi.org/10.1016/S0039-9140(98)00351-8

    Article  CAS  PubMed  Google Scholar 

  25. Fallas MM, Hadley MR, McCalley DV (2009) Practical assessment of frictional heating effects and thermostat design on the performance of conventional (3μm and 5μm) columns in reversed-phase high-performance liquid chromatography. J Chromatogr A 1216(18):3961–3969. https://doi.org/10.1016/j.chroma.2009.03.007

    Article  CAS  PubMed  Google Scholar 

  26. Khataei MM, Yamini Y, Shamsayei M (2021) Applications of porous frameworks in solid-phase microextraction. J Sep Sci 44(6):1231–1263. https://doi.org/10.1002/jssc.202001172

    Article  CAS  PubMed  Google Scholar 

  27. Feng J, Feng J, Ji X, Li C, Han S, Sun H, Sun M (2021) Recent advances of covalent organic frameworks for solid-phase microextraction. TrAC, Trends Anal Chem 137:116208. https://doi.org/10.1016/j.trac.2021.116208

    Article  CAS  Google Scholar 

  28. Wang J, Qu X, Zhao L, Yan B (2021) Fabricating nanosheets and ratiometric detection of 5-fluorouracil by covalent organic framework hybrid material. Anal Chem 93(9):4308–4316. https://doi.org/10.1021/acs.analchem.0c05309

    Article  CAS  PubMed  Google Scholar 

  29. Khataei MM, Yamini Y, Ghaemmaghami M (2020) Reduced graphene-decorated covalent organic framework as a novel coating for solid-phase microextraction of phthalate esters coupled to gas chromatography-mass spectrometry. Microchim Acta 187(4):256. https://doi.org/10.1007/s00604-020-4224-9

    Article  CAS  Google Scholar 

  30. Alleborn N, Nandakumar K, Raszillier H, Durst F (1997) Further contributions on the two-dimensional flow in a sudden expansion. J Fluid Mech 330:169–188. https://doi.org/10.1017/S0022112096003382

    Article  CAS  Google Scholar 

  31. Cherdron W, Durst F, Whitelaw JH (1978) Asymmetric flows and instabilities in symmetric ducts with sudden expansions. J Fluid Mech 84(1):13–31. https://doi.org/10.1017/S0022112078000026

    Article  CAS  Google Scholar 

  32. Rachipudi P, Kittur A, Sajjan A, Kariduraganavar M (2013) Synthesis and characterization of hybrid membranes using chitosan and 2-(3, 4-epoxycyclohexyl) ethyltrimethoxysilane for pervaporation dehydration of isopropanol. J Membr Sci 441:83–92. https://doi.org/10.1016/j.memsci.2013.03.055

    Article  CAS  Google Scholar 

  33. Puzio B, Mikuła B, Feist B (2008) Preconcentration of Cd (II) and Cu (II) by solid phase extraction on cyanopropyl modified silica columns using 1, 10-phenanthroline as the complexing agent. Microchim Acta 160(1-2):197–201. https://doi.org/10.1007/s00604-007-0848-2

    Article  CAS  Google Scholar 

  34. Ramesh A, Mohan KR, Seshaiah K (2002) Preconcentration of trace metals on Amberlite XAD-4 resin coated with dithiocarbamates and determination by inductively coupled plasma-atomic emission spectrometry in saline matrices. Talanta 57(2):243–252. https://doi.org/10.1016/S0039-9140(02)00033-4

    Article  CAS  PubMed  Google Scholar 

  35. Narin I, Soylak M (2003) The uses of 1-(2-pyridylazo) 2-naphtol (PAN) impregnated Ambersorb 563 resin on the solid phase extraction of traces heavy metal ions and their determinations by atomic absorption spectrometry. Talanta 60(1):215–221. https://doi.org/10.1016/S0039-9140(03)00039-0

    Article  CAS  PubMed  Google Scholar 

  36. Thangphatthanarungruang J, Lomae A, Chailapakul O, Chaiyo S, Siangproh W (2021) A low-cost paper-based diamond electrode for trace copper analysis at on-site environmental area. Electroanalysis 33(1):226–232. https://doi.org/10.1002/elan.202060305

    Article  CAS  Google Scholar 

  37. Jayawardane BM, Cattrall RW, Kolev SD (2013) The use of a polymer inclusion membrane in a paper-based sensor for the selective determination of Cu (II). Anal Chim Acta 803:106–112. https://doi.org/10.1016/j.aca.2013.07.029

    Article  CAS  PubMed  Google Scholar 

  38. Yamini Y, Hejazi L, Mohammadi DE (2003) Solid phase extraction and simultaneous spectrophotometric determination of trace amounts of copper and iron using mixture of ligands. Microchim Acta 142:21–25. https://doi.org/10.1007/s00604-002-0957-x

    Article  CAS  Google Scholar 

  39. Schwab MG, Fassbender B, Spiess HW, Thomas A, Feng X, Mullen K (2009) Catalyst-free preparation of melamine-based microporous polymer networks through Schiff base chemistry. J Am Chem Soc 131(21):7216–7217. https://doi.org/10.1021/ja902116f

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work received financial support from Tarbiat Modares University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadollah Yamini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khataei, M.M., Yamini, Y., Karami, M. et al. A miniaturized analytical system with packed epoxy-functionalized mesoporous organosilica for copper determination using a customized Android-based software. Microchim Acta 190, 289 (2023). https://doi.org/10.1007/s00604-023-05847-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05847-3

Keywords

Navigation