Skip to main content
Log in

Fluorescence detection of dopamine based on the peroxidase-like activity of Fe3O4-MWCNTs@Hemin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel Fe3O4-MWCNTs@Hemin nanocomposite was synthesized using hemin and Fe3O4 with multi-walled carbon nanotubes (MWCNTs) by one-step hydrothermal methods. The as-prepared Fe3O4-MWCNTs@Hemin nanocomposites exhibited excellent peroxidase-like activities in the activation of H2O2. The mechanisms, kinetics, and catalytic performances of Fe3O4-MWCNTs@Hemin were systematically studied. Fe3O4-MWCNTs@Hemin can oxidize dopamine (DA) to dopaquinone in the presence of H2O2, and the intermediate products dopaquinone can further react with β-naphthol to generate a highly fluorescent derivative at 415 nm excitation wavelength. Therefore, an innovative fluorescence platform for the detection of DA was developed. The fluorescence intensity increased linearly with DA concentration in the range 0.33 to 107 μM, with a low detection limit of 0.14 μM. Due to the excellent activity, substrate universality, fast response, high selectivity, and sensitivity of Fe3O4-MWCNTs@Hemin, the proposed fluorescence method was used to analyze complex biological blood samples with a satisfactory result. It demonstrated the significant potential for developing effective and dependable fluorescent analytical platforms for preserving human health.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Scheme 3

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Wan Y, Li L, Jiang M, Yang X, Yu X, Xu L (2022) One-pot synthesis of boron and nitrogen co-doped silicon-carbon dots for fluorescence enhancement and on-site colorimetric detection of dopamine with high selectivity. Appl Surf Sci. 573:151457. https://doi.org/10.1016/j.apsusc.2021.151457

    Article  CAS  Google Scholar 

  2. Tang X, Liu Y, Bai X, Yuan H, Hu Y, Yu X, Liao X (2021) Turn-on fluorescent probe for dopamine detection in solutions and live cells based on in situ formation of aminosilane-functionalized carbon dots. Anal Chim. Acta. 1157:338394. https://doi.org/10.1016/j.aca.2021.338394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang Y, Wang D, Dong S, Qiao J, Zeng Z, Shao S (2022) A visible-light-driven photoelectrochemical sensing platform based on the BiVO4/FeOOH photoanode for dopamine detection. Electrochim. Acta. 414:140207. https://doi.org/10.1016/j.electacta.2022.140207

    Article  CAS  Google Scholar 

  4. Lv Q, Chen L, Liu H, Zou L (2022) Peony-like 3D-MoS2/graphene nanostructures with enhanced mimic peroxidase performance for colorimetric determination of dopamine. Talanta 247:123553. https://doi.org/10.1016/j.talanta.2022.123553

    Article  CAS  PubMed  Google Scholar 

  5. Guo H, Liu B, Pan Z, Sun L, Peng L, Chen Y, Wu N, Wang M, Yang W (2022) Electrochemical determination of dopamine and uric acid with covalent organic frameworks and Ox-MWCNT co-modified glassy carbon electrode. Colloids Surf. 648:129316. https://doi.org/10.1016/j.colsurfa.2022.129316

    Article  CAS  Google Scholar 

  6. Zhao H, Mu H, Bai Y, Yu H, Hu Y (2011) A rapid method for the determination of dopamine in porcine muscle by pre-column derivatization and HPLC with fluorescence detection. J Pharm Anal 1(3):208–212. https://doi.org/10.1016/j.jpha.2011.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gottås A, Ripel A, Boix F, Vindenes V, Mørland J, øiestad EL, (2015) Determination of dopamine concentrations in brain extracellular fluid using microdialysis with short sampling intervals, analyzed by ultra high performance liquid chromatography tandem mass spectrometry. J Pharmacol Toxicol Methods 74:75–79. https://doi.org/10.1016/j.vascn.2015.06.002

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Y, Yin H, Jia C, Dong Y, Ding H, Chu X (2020) Electrogenerated chemiluminescence of Ru(bpy)32+ at MoS2 nanosheets modified electrode and its application in the sensitive detection of dopamine. Spectrochim. Acta, Part A 240:118607. https://doi.org/10.1016/j.saa.2020.118607

    Article  CAS  Google Scholar 

  9. Sun Y, Cheng Y, Yin X (2021) Dual-ligand lanthanide metal-organic framework for sensitive ratiometric fluorescence detection of hypochlorous acid. Anal Chem 93(7):3559–3566. https://doi.org/10.1021/acs.analchem.0c05040

    Article  CAS  PubMed  Google Scholar 

  10. Chen B, Chang S, Lv J, Qian R, Li D (2021) Temperature-modulated porous gadolinium micro-networks with hyperchrome-enhanced fluorescence effect. Chem Eng. J. 422:129959. https://doi.org/10.1016/j.cej.2021.129959

    Article  CAS  Google Scholar 

  11. He Y, Pan C, Cao H, Yue M, Wang L, Liang G (2018) Highly sensitive and selective dual-emission ratiometric fluorescence detection of dopamine based on carbon dots-gold nanoclusters hybrid. Sens Actuators, B 265:371–377

    Article  CAS  Google Scholar 

  12. Liu X, Yu W, Mu X, Zhang W, Wang X, Gu Q (2023) A fluorescence probe based on carbon dots for determination of dopamine utilizing its self-polymerization. Spectrochim Acta, Part A 287(2):122112

    Article  CAS  Google Scholar 

  13. Xu S, Chang L, Zhao X, Hu Y, Lin Y, Chen Z, Ren X, Mei X (2022) Preparation of epigallocatechin gallate decorated Au-Ag nano-heterostructures as NIR-sensitive nano-enzymes for the treatment of osteoarthritis through mitochondrial repair and cartilage protection. Acta Biomater 144:168–182. https://doi.org/10.1016/j.actbio.2022.03.038

    Article  CAS  PubMed  Google Scholar 

  14. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Oerrett S (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2:577–583. https://doi.org/10.1038/nnano.2007.260

    Article  CAS  PubMed  Google Scholar 

  15. Yang W, Fei J, Xu W, Jiang H, Sakran M, Hong J, Zhu W, Zhou X (2022) A biosensor based on the biomimetic oxidase Fe3O4@MnO2 for colorimetric determination of uric acid. Colloids Surf, B 212:112347–112347. https://doi.org/10.1016/j.colsurfb.2022.112347

    Article  CAS  Google Scholar 

  16. Liu H, Xu H, Zhu L, Wen J, Qiu Y, Gu C, Li L (2021) Colorimetric detection of hydrogen peroxide and glutathione based on peroxidase mimetic activity of fe3o4-sodium lignosulfonate nanoparticles. Chinese J Anal Chem 49(9):21160–21169. https://doi.org/10.1016/S1872-2040(21)60113-5

    Article  Google Scholar 

  17. Nejad FG, Sheikhshoaie I, Beitollahi H (2022) Simultaneous detection of carmoisine and tartrazine in food samples using GO-Fe3O4-PAMAM and ionic liquid based electrochemical sensor. Food Chem Toxicol 162:112864. https://doi.org/10.1016/j.fct.2022.112864

    Article  CAS  Google Scholar 

  18. Li S, Pang C, Ma X, Wu Y, Wang M, Xu Z, Luo J (2022) Aggregation-induced electrochemiluminescence and molecularly imprinted polymer based sensor with Fe3O4@Pt nanoparticle amplification for ultrasensitive ciprofloxacin detection. Microchem. J. 178:107345. https://doi.org/10.1016/j.microc.2022.107345

    Article  CAS  Google Scholar 

  19. Liu W, Chu L, Zhang C, Ni P, Jiang Y, Wang B, Lu Y, Chen C (2021) Hemin-assisted synthesis of peroxidase-like Fe-N-C nanozymes for detection of ascorbic acid-generating bio-enzymes. Chem Eng. J. 415:128876. https://doi.org/10.1016/j.cej.2021.128876

    Article  CAS  Google Scholar 

  20. Zhang F, Long X, Zhang D, Sun Y, Zhou Y, Ma Y, Qi L, Zhang X (2014) Layered double hydroxide-hemin nanocomposite as mimetic peroxidase and its application in sensing. Sens Actuators, B 192:150–156. https://doi.org/10.1016/j.snb.2013.10.097

    Article  CAS  Google Scholar 

  21. Li D, Wu S, Wang F, Jia S, Liu Y, Han X, Zhang L, Zhang S, Wu Y (2016) A facile one-pot synthesis of hemin/ZIF-8 composite as mimetic peroxidase. Mater Lett 178:48–51. https://doi.org/10.1016/j.matlet.2016.04.200

    Article  CAS  Google Scholar 

  22. Sun R, Wang Y, Ni Y, Kokot S (2014) Spectrophotometric analysis of phenols, which involves a hemin–graphene hybrid nanoparticles with peroxidase-like activity. J Hazard Mater 266:60–67. https://doi.org/10.1016/j.jhazmat.2013.12.006

    Article  CAS  PubMed  Google Scholar 

  23. Liu H, Jin F, Liu D, Liu W, Zhao J, Chen P, Wang Q, Wang X, Zou Y (2022) Preparation and electrochemical performance of MWCNT/MoS2 composite modified Co–P hydrogen storage material. Solid State Sci. 131:106952. https://doi.org/10.1016/j.solidstatesciences.2022.106952

    Article  CAS  Google Scholar 

  24. Mousaabadi KZ, Ensafi AA, Rezaei B (2022) Simultaneous determination of some opioid drugs using Cu-hemin MOF@MWCNTs as an electrochemical sensor. Chemosphere 303:135149. https://doi.org/10.1016/j.chemosphere.2022.134023

    Article  CAS  PubMed  Google Scholar 

  25. Tong Y, Boldoo T, Ham J, Redcho HC (2020) Improvement of photo-thermal energy conversion performance of MWCNT/Fe3O4 hybrid nanofluid compared to Fe3O4 nanofluid. Energy. 196:117086. https://doi.org/10.1016/j.energy.2020.117086

    Article  CAS  Google Scholar 

  26. Cui L, Huang H, Ding P, Zhu S, Jing W, Gu X (2020) Cogeneration of H2O2 and ·OH via a novel Fe3O4/MWCNTs composite cathode in a dual-compartment electro-Fenton membrane reactor. Sep Purif Technol. 237:116380. https://doi.org/10.1016/j.seppur.2019.116380

    Article  CAS  Google Scholar 

  27. Hussain S, Alam MM, Imran M, Ali MA, Ahamad T, Haidyrah AS, Alotaibi SMAR, Naik M, Shariq M (2022) A facile low-cost scheme for highly photoactive Fe3O4-MWCNTs nanocomposite material for degradation of methylene blue. Alexandria Eng J 61:9107–9117. https://doi.org/10.1016/j.aej.2022.02.050

    Article  Google Scholar 

  28. Shamsazar A, Asadi A, Seifzadeh D, Mahdavi M (2021) A novel and highly sensitive sandwich-type immunosensor for prostate-specific antigen detection based on MWCNTs-Fe3O4 nanocomposite. Sens Actuators B. 346:130459. https://doi.org/10.1016/j.snb.2021.130459

    Article  CAS  Google Scholar 

  29. Gharibshahi R, Omidkhah M, Jafari A, Fakhroueian Z (2020) Hybridization of superparamagnetic Fe3O4 nanoparticles with MWCNTs and effect of surface modification on electromagnetic heating process efficiency: a microfluidics enhanced oil recovery study. Fuel. 282:118603. https://doi.org/10.1016/j.fuel.2020.118603

    Article  CAS  Google Scholar 

  30. Moghadam MTT, Seifi M, Askari MB, Azizi S (2022) ZnO-MWCNT@Fe3O4 as a novel catalyst for methanol and ethanol oxidation. J Phys Chem Solids. 165:110688. https://doi.org/10.1016/j.jpcs.2022.110688

    Article  CAS  Google Scholar 

  31. Zhang Y, Wu P, Chen Z, Zhou L, Zhao Y, Lai Y, Duan Y, Wang F, Li S (2019) Synergistic effect in heterogeneous Fenton degradation of tetrabromobisphenol A by MWCNT and β-CD co-modified Fe3O4. Mater Res Bull 113:14–24. https://doi.org/10.1016/j.materresbull.2019.01.008

    Article  CAS  Google Scholar 

  32. Yang J, Zhai X, Dong X, Zhao L, Zhang Y, Xiao H, Ju P, Duan J, Tang X, Hou B (2023) Peroxidase-like phosphate hydrate nanosheets bio-synthesized by a marine Shewanella algae strain for highly sensitive dopamine detection. Colloids Surf, B 225:113248. https://doi.org/10.1016/j.colsurfb.2023.113248

    Article  CAS  Google Scholar 

  33. Huang X, Zhou H, Yue X, Ran S, Zhu J (2021) Novel magnetic Fe3O4/α-FeOOH nanocomposites and their enhanced mechanism for tetracycline hydrochloride removal in the visible photo-Fenton process. ACS Omega 6(13):9095–9103. https://doi.org/10.1021/acsomega.1c00204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang D, Du P, Chen J, Guo H, Lu X (2021) Pyrazolate-based porphyrinic metal-organic frameworks as catechol oxidase mimic enzyme for fluorescent and colorimetric dual-mode detection of dopamine with high sensitivity and specificity. Sens Actuators, B 341:130000. https://doi.org/10.1016/j.snb.2021.130000

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Analysis and Testing Foundation of Kunming University of Science and Technology (grant numbers 2021T20200097 and 2021M20202118090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaling Yang.

Ethics declarations

Ethical standards

This research was approved by the Kunming University of Science and Technology Ethic Committee (KMUST-MEC-087), and all experiments were performed in accordance with the Guideline for Experimentation of Kunming University of Science and Technology.

Source of biological material

The blood samples were collected from volunteers who gave informed written consent for inclusion.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1031 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, F., Wang, Y., Li, Q. et al. Fluorescence detection of dopamine based on the peroxidase-like activity of Fe3O4-MWCNTs@Hemin. Microchim Acta 190, 259 (2023). https://doi.org/10.1007/s00604-023-05796-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05796-x

Keywords

Navigation