Skip to main content
Log in

Glucometer-based biosensor for the determination of ractopamine in animal-derived foods using rolling circle amplification

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Screening for persistent organic pollutants (POPs) in food is a complex and challenging process, as POPs can be present in very low levels and can be difficult to detect. Herein, we developed an ultrasensitive biosensor based on a rolling circle amplification (RCA) platform using a glucometer to determine POP. The biosensor was constructed using gold nanoparticle probes modified with antibodies and dozens of primers, magnetic microparticle probes conjugated with haptens, and targets. After competition, RCA reactions are triggered, numerous RCA products hybridize with the ssDNA-invertase, and the target is successfully transformed into glucose. Using ractopamine as a model analyte, this strategy obtained a linear detection range of 0.038–5.00 ng mL−1 and a detection limit of 0.0158 ng mL−1, which was preliminarily verified by screening in real samples. Compared with conventional immunoassays, this biosensor utilizes the high efficiency of RCA and the portable properties of a glucometer, which effectively improves the sensitivity and simplifies the procedures using magnetic separation technology. Moreover, it has been successfully applied to ractopamine determination in animal-derived foods, revealing its potential as a promising tool for POP screening.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alharbi OML, Basheer AA, Khattab RA, Ali I (2018) Health and environmental effects of persistent organic pollutants. J Mol Liq 263:442–453. https://doi.org/10.1016/j.molliq.2018.05.029

    Article  CAS  Google Scholar 

  2. Beard J (2006) DDT and human health. Sci Total Environ 355:78–89. https://doi.org/10.1016/j.scitotenv.2005.02.022

    Article  CAS  PubMed  Google Scholar 

  3. Dietrich JA, McKee AE, Keasling JD (2010) High-throughput metabolic engineering: advances in small-molecule screening and selection. Annu Rev Biochem 79:563–590. https://doi.org/10.1146/annurev-biochem-062608-095938

    Article  CAS  PubMed  Google Scholar 

  4. Li YF, Sun YM, Beier RC, Lei HT, Gee S, Hammock BD, Wang H, Wang Z, Sun X, Shen YD, Yang JY, Xu ZL (2017) Immunochemical techniques for multianalyte analysis of chemical residues in food and the environment: a review. TrAC Trends Anal Chem 88:25–40. https://doi.org/10.1016/j.trac.2016.12.010

    Article  CAS  Google Scholar 

  5. Li G, Zhang X, Zheng F, Liu J, Wu D (2020) Emerging nanosensing technologies for the detection of beta-agonists. Food Chem 332:127431. https://doi.org/10.1016/j.foodchem.2020.127431

    Article  CAS  PubMed  Google Scholar 

  6. Wei H, Gao L, Fan K, Liu J, He J, Qu X, Dong S, Wang E, Yan X (2021) Nanozymes: a clear definition with fuzzy edges. Nano Today 40:101269. https://doi.org/10.1016/j.nantod.2021.101269

    Article  CAS  Google Scholar 

  7. Yang F, Xu L, Dias ACP, Zhang X (2021) A sensitive sandwich ELISA using a modified biotin-streptavidin amplified system for histamine detection in fish, prawn and crab. Food Chem 350:129196. https://doi.org/10.1016/j.foodchem.2021.129196

    Article  CAS  PubMed  Google Scholar 

  8. Yan L, Zhou J, Zheng Y, Gamson AS, Roembke BT, Nakayama S, Sintim HO (2014) Isothermal amplified detection of DNA and RNA. Mol BioSyst 10:970–1003. https://doi.org/10.1039/c3mb70304e

    Article  CAS  PubMed  Google Scholar 

  9. Nam JM, Thaxton CS, Mirkin CA (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301:1884–1886. https://doi.org/10.1126/science.1088755

    Article  CAS  PubMed  Google Scholar 

  10. Du P, Jin M, Zhang C, Chen G, Cui X, Zhang Y, Zhang Y, Zou P, Jiang Z, Cao X, She Y, Jin F, Wang J (2018) Highly sensitive detection of triazophos pesticide using a novel bio-bar-code amplification competitive immunoassay in a micro well plate-based platform. Sens Actuators B 256:457–464. https://doi.org/10.1016/j.snb.2017.10.075

    Article  CAS  Google Scholar 

  11. Du P, Jin M, Chen G, Zhang C, Jiang Z, Zhang Y, Zou P, She Y, Jin F, Shao H, Wang S, Zheng L, Wang J (2016) A competitive bio-barcode amplification immunoassay for small molecules based on nanoparticles. Sci Rep 6:38114. https://doi.org/10.1038/srep38114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang Y, Abd El-Aty AM, Chen G, Jia H, Cui X, Xu L, Cao Z, She Y, Jin F, Zhang Y, Hacimuftuoglu A, Lamu S, Wang J, Zheng L, Jin M, Hammock BD (2022) A competitive immunoassay for detecting triazophos based on fluorescent catalytic hairpin self-assembly. Microchim Acta 189:114. https://doi.org/10.1007/s00604-022-05217-5

    Article  CAS  Google Scholar 

  13. Guo Q, Han JJ, Shan S, Liu DF, Wu SS, Xiong YH, Lai WH (2016) DNA-based hybridization chain reaction and biotin-streptavidin signal amplification for sensitive detection of Escherichia coli O157:H7 through ELISA. Biosens Bioelectron 86:990–995. https://doi.org/10.1016/j.bios.2016.07.049

    Article  CAS  PubMed  Google Scholar 

  14. Moehling TJ, Choi G, Dugan LC, Salit M, Meagher RJ (2021) LAMP diagnostics at the point-of-care: emerging trends and perspectives for the developer community. Expert Rev Mol Diagn 21:43–61. https://doi.org/10.1080/14737159.2021.1873769

    Article  CAS  PubMed  Google Scholar 

  15. Jiang Y, Zou S, Cao X (2017) A simple dendrimer-aptamer based microfluidic platform for E. coli O157:H7 detection and signal intensification by rolling circle amplification. Sens Actuators B 251:976–984. https://doi.org/10.1016/j.snb.2017.05.146

    Article  CAS  Google Scholar 

  16. Yue S, Li Y, Qiao Z, Song W, Bi S (2021) Rolling circle replication for biosensing, bioimaging, and biomedicine. Trends Biotechnol 39:1160–1172. https://doi.org/10.1016/j.tibtech.2021.02.007

    Article  CAS  PubMed  Google Scholar 

  17. Luppa PB, Muller C, Schlichtiger A, Schlebusch H (2011) Point-of-care testing (POCT): current techniques and future perspectives. TrAC Trends Anal Chem 30:887–898. https://doi.org/10.1016/j.trac.2011.01.019

    Article  CAS  Google Scholar 

  18. Dincer C, Bruch R, Kling A, Dittrich PS, Urban GA (2017) Multiplexed point-of-care testing - xPOCT. Trends Biotechnol 35:728–742. https://doi.org/10.1016/j.tibtech.2017.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Quesada-Gonzalez D, Merkoci A (2018) Nanomaterial-based devices for point-of-care diagnostic applications. Chem Soc Rev 47:4697–4709. https://doi.org/10.1039/c7cs00837f

    Article  CAS  PubMed  Google Scholar 

  20. Newman JD, Turner AP (2005) Home blood glucose biosensors: a commercial perspective. Biosens Bioelectron 20:2435–2453. https://doi.org/10.1016/j.bios.2004.11.012

    Article  CAS  PubMed  Google Scholar 

  21. Aggidis AG, Newman JD, Aggidis GA (2015) Investigating pipeline and state of the art blood glucose biosensors to formulate next steps. Biosens Bioelectron 74:243–262. https://doi.org/10.1016/j.bios.2015.05.071

    Article  CAS  PubMed  Google Scholar 

  22. Vashist SK (2012) Non-invasive glucose monitoring technology in diabetes management: a review. Anal Chim Acta 750:16–27. https://doi.org/10.1016/j.aca.2012.03.043

    Article  CAS  PubMed  Google Scholar 

  23. Xiang Y, Lu Y (2011) Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets. Nat Chem 3:697–703. https://doi.org/10.1038/nchem.1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tang D, Lin Y, Zhou Q, Lin Y, Li P, Niessner R, Knopp D (2014) Low-cost and highly sensitive immunosensing platform for aflatoxins using one-step competitive displacement reaction mode and portable glucometer-based detection. Anal Chem 86:11451–11458. https://doi.org/10.1021/ac503616d

    Article  CAS  PubMed  Google Scholar 

  25. Tang J, Huang Y, Liu H, Zhang C, Tang D (2016) Novel glucometer-based immunosensing strategy suitable for complex systems with signal amplification using surfactant-responsive cargo release from glucose-encapsulated liposome nanocarriers. Biosens Bioelectron 79:508–514. https://doi.org/10.1016/j.bios.2015.12.097

    Article  CAS  PubMed  Google Scholar 

  26. Joo J, Kwon D, Shin HH, Park K-H, Cha HJ, Jeon S (2013) A facile and sensitive method for detecting pathogenic bacteria using personal glucose meters. Sensors Actuators B 188:1250–1254. https://doi.org/10.1016/j.snb.2013.08.027

    Article  CAS  Google Scholar 

  27. Xu X, Su Y, Zhang Y, Wang X, Tian H, Ma X, Chu H, Xu W (2021) Novel rolling circle amplification biosensors for food-borne microorganism detection. TrAC Trends Anal Chem 141:116293. https://doi.org/10.1016/j.trac.2021.116293

    Article  CAS  Google Scholar 

  28. Huang S, Wang W, Cheng F, Yao H, Zhu J-J (2017) Highly sensitive detection of mercury ion based on T-rich DNA machine using portable glucose meter. Sensors Actuators B 242:347–354. https://doi.org/10.1016/j.snb.2016.10.123

    Article  CAS  Google Scholar 

  29. Gong S, Li J, Pan W, Li N, Tang B (2021) Duplex-specific nuclease-assisted CRISPR-Cas12a strategy for MicroRNA detection using a personal glucose meter. Anal Chem 93:10719–10726. https://doi.org/10.1021/acs.analchem.1c02478

    Article  CAS  PubMed  Google Scholar 

  30. Chen D, Yang M, Zheng N, Xie N, Liu D, Xie C, Yao D (2016) A novel aptasensor for electrochemical detection of ractopamine, clenbuterol, salbutamol, phenylethanolamine and procaterol. Biosens Bioelectron 80:525–531. https://doi.org/10.1016/j.bios.2016.01.025

    Article  CAS  PubMed  Google Scholar 

  31. Carr SN, Hamilton DN, Miller KD, Schroeder AL, Fernandez-Duenas D, Killefer J, Ellis M, McKeith FK (2009) The effect of ractopamine hydrochloride (Paylean) on lean carcass yields and pork quality characteristics of heavy pigs fed normal and amino acid fortified diets. Meat Sci 81:533–539. https://doi.org/10.1016/j.meatsci.2008.10.007

    Article  CAS  PubMed  Google Scholar 

  32. Wang MY, Zhu W, Ma L, Ma JJ, Zhang DE, Tong ZW, Chen J (2016) Enhanced simultaneous detection of ractopamine and salbutamol-Via electrochemical-facial deposition of MnO2 nanoflowers onto 3D RGO/Ni foam templates. Biosens Bioelectron 78:259–266. https://doi.org/10.1016/j.bios.2015.11.062

    Article  CAS  PubMed  Google Scholar 

  33. Yang F, Wang P, Wang R, Zhou Y, Su X, He Y, Shi L, Yao D (2016) Label free electrochemical aptasensor for ultrasensitive detection of ractopamine. Biosens Bioelectron 77:347–352. https://doi.org/10.1016/j.bios.2015.09.050

    Article  CAS  PubMed  Google Scholar 

  34. Du P, Jin M, Chen G, Zhang C, Cui X, Zhang Y, Zhang Y, Zou P, Jiang Z, Cao X, She Y, Jin F, Wang J (2017) Competitive colorimetric triazophos immunoassay employing magnetic microspheres and multi-labeled gold nanoparticles along with enzymatic signal enhancement. Microchim Acta 184:3705–3712. https://doi.org/10.1007/s00604-017-2365-2

    Article  CAS  Google Scholar 

  35. Chen S, Zhang J, Gan N, Hu F, Li T, Cao Y, Pan D (2014) An on-site immunosensor for ractopamine based on a personal glucose meter and using magnetic β-cyclodextrin-coated nanoparticles for enrichment, and an invertase-labeled nanogold probe for signal amplification. Microchim Acta 182:815–822. https://doi.org/10.1007/s00604-014-1392-5

    Article  CAS  Google Scholar 

  36. Georganopoulou DG, Chang L, Nam JM, Thaxton CS, Mufson EJ, Klein WL, Mirkin CA (2005) Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc Natl Acad Sci USA 102:2273–2276. https://doi.org/10.1073/pnas.0409336102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhou Z, Xiang Y, Tong A, Lu Y (2014) Simple and efficient method to purify DNA-protein conjugates and its sensing applications. Anal Chem 86:3869–3875. https://doi.org/10.1021/ac4040554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen ZJ, Qu XM, Tang FQ, Jiang L (1996) Effect of nanometer particles on the adsorbability and enzymatic activity of glucose oxidase. Colloids Surf B 7:173–179. https://doi.org/10.1016/0927-7765(96)01291-X

    Article  CAS  Google Scholar 

  39. Pandey P, Singh SP, Arya SK, Gupta V, Datta M, Singh S, Malhotra BD (2007) Application of thiolated gold nanoparticles for the enhancement of glucose oxidase activity. Langmuir 23:3333–3337. https://doi.org/10.1021/la062901c

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Shandong Province (ZR2020QC250), China Agriculture Research System (CARS-38), Modern Agricultural Technology Industry System of Shandong Province (SDAIT-10–10), and Key Technology Research and Development Program of Shandong (2021CXGC010809 and 2021TZXD012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengfei Du or Weiting Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10205 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, F., Li, T., Wang, H. et al. Glucometer-based biosensor for the determination of ractopamine in animal-derived foods using rolling circle amplification. Microchim Acta 190, 121 (2023). https://doi.org/10.1007/s00604-023-05715-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05715-0

Keywords

Navigation