Skip to main content
Log in

Red emissive N-doped carbon dots encapsulated within molecularly imprinted polymers for optosensing of pyrraline in fatty foods

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel and facile method was proposed for preparation of red emissive N-doped carbon dots encapsulated within molecularly imprinted polymers (RNCDs@MIPs) using a one-pot room-temperature reverse microemulsion polymerization. RNCDs used citric acid and urea as carbon and nitrogen sources by one-step solvothermal synthesis with the optimum emission of 620 nm. Unique optical properties of RNCDs coupled with high selective MIPs make the RNCDs@MIPs conjugate capable to adsorb specific targets of pyrraline (PRL), such a binding event was then transduced to quench fluorescence response signal of the RNCDs. RNCDs@MIPs for PRL showed linearity from 0.1 to 40 μg/L, with a detection limit of 65 ng/L. The RNCDs@MIPs exhibited a good reproducibility of 4.67% obtained from four times of rebinding for PRL. The optosensing probe was successfully applied to the detection of PRL in fatty foods with the spiked recovery of 85.93–106.96%.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li S, Li L, Tu HY, Zhang H, Silvester D, Banks C, Zou GQ, Hou HS, Ji XB (2021) The development of carbon dots: from the perspective of materials chemistry. Mater Today 51:188–207. https://doi.org/10.1016/j.mattod.2021.07.028

    Article  CAS  Google Scholar 

  2. Yao BW, Huang H, Liu Y, Kang ZH (2019) Carbon dots: a small conundrum. Trends Chem 1(2):235–246. https://doi.org/10.1016/j.trechm.2019.02.003

    Article  CAS  Google Scholar 

  3. Xu H, Yang XP, Li G, Zhao C, Liao XJ (2015) Green synthesis of fluorescent carbon dots for selective detection of tartrazine in food samples. J Agric Food Chem 63:6707–6714. https://doi.org/10.1021/acs.jafc.5b02319

    Article  CAS  PubMed  Google Scholar 

  4. Aslan M, Eskalen H (2021) A study of carbon nanodots (carbon quantum dots) synthesized from tangerine juice using one-step hydrothermal method. Fuller Nanotub Car N 29(12):1026–1033. https://doi.org/10.1080/1536383X.2021.1926452

    Article  CAS  Google Scholar 

  5. Zhang Y, Zhu XC, Li MJ, Liu HL, Sun BG (2022) Temperature-responsive covalent organic framework-encapsulated carbon dot-based sensing platform for pyrethroid detection via fluorescence response and smartphone readout. J Agric Food Chem 70:6059–6071. https://doi.org/10.1021/acs.jafc.2c01568

    Article  CAS  PubMed  Google Scholar 

  6. Demir B, Lemberger M, Panagiotopoulou M, Rangel PM, Timur S, Hirsch T, Bui BTS, Wegener J, Haupt K (2018) Tracking hyaluronan: molecularly imprinted polymer coated carbon dots for cancer cell targeting and imaging. ACS Appl Mater Inter 10(4):3305–3313. https://doi.org/10.1021/acsami.7b16225

    Article  CAS  Google Scholar 

  7. Yuan XY, Zhang DW, Zhu XC, Liu HL, Sun BG (2021) Triple-dimensional spectroscopy combined with chemometrics for the discrimination of pesticide residues based on ionic liquid-stabilized Mn-ZnS quantum dots and covalent organic frameworks. Food Chem 342:128299. https://doi.org/10.1016/j.foodchem.2020.128299

    Article  CAS  PubMed  Google Scholar 

  8. Kang Z, Lee ST (2019) Carbon dots: advances in nanocarbon applications. Nanoscale 11(41):19214–19224. https://doi.org/10.1039/c9nr05647e

    Article  CAS  PubMed  Google Scholar 

  9. Sun X, Liu Y, Niu N, Chen L (2019) Synthesis of molecularly imprinted fluorescent probe based on biomass-derived carbon quantum dots for detection of mesotrione. Anal Bioanal Chem 411:5519–5530. https://doi.org/10.1007/s00216-019-01930-y

    Article  CAS  PubMed  Google Scholar 

  10. Sun X, Jiang MW, Chen LG, Niu N (2021) Construction of ratiometric fluorescence MIPs probe for selective detection of tetracycline based on passion fruit peel carbon dots and europium. Microchim Acta 188(9):297–297. https://doi.org/10.1007/s00604-021-04929-4

    Article  CAS  Google Scholar 

  11. Feng XT, Ashley J, Zhou TC, Sun Y (2018) Fluorometric determination of doxycycline based on the use of carbon quantum dots incorporated into a molecularly imprinted polymer. Microchim Acta 185(11):500. https://doi.org/10.1007/s00604-018-2999-8

    Article  CAS  Google Scholar 

  12. Amjadi M, Jalili R (2017) Molecularly imprinted mesoporous silica embedded with carbon dots and semiconductor quantum dots as a ratiometric fluorescent sensor for diniconazole. Biosens Bioelectron 96:121–126. https://doi.org/10.1016/j.bios.2017.04.045

    Article  CAS  PubMed  Google Scholar 

  13. Qi ZK, Lu RQ, Wang SY, Xiang CJ, Xie C, Zheng MN, Tian XG, Xu XY (2021) Selective fluorometric determination of microcystin-LR using a segment template molecularly imprinted by polymer-capped carbon quantum dots. Microchem J 161:105798. https://doi.org/10.1016/j.microc.2020.105798

    Article  CAS  Google Scholar 

  14. Zhu ZJ, Zhai YL, Li ZH, Zhu PY, Mao S, Zhu CZ, Du D, Belfiore LA, Tang JG, Lin YH (2019) Red carbon dots: optical property regulations and applications. Mater Today 30:52–79. https://doi.org/10.1016/j.mattod.2019.05.003

    Article  CAS  Google Scholar 

  15. Li HT, Sun CH, Vijayaraghavan R, Zhou FL, Zhang XY, MacFarlane DR (2016) Long lifetime photoluminescence in N, S co-doped carbon quantum dots from an ionic liquid and their applications in ultrasensitive detection of pesticides. Carbon 104:3–39. https://doi.org/10.1016/j.carbon.2016.03.040

    Article  CAS  Google Scholar 

  16. Qu D, Sun ZC, Zheng M, Li J, Zhang YQ, Zhang GQ, Zhao HF, Liu XY, Xie ZG (2015) Three colors emission from S, N Co-doped graphene quantum dots for visible light H-2 production and bioimaging. Adv Opt Mater 3(3):360–367. https://doi.org/10.1002/adom.201400549

    Article  CAS  Google Scholar 

  17. Xu X, Xu G, Wei F, Yao C, Shi M, Xia C, Muhammad S, Qin H (2018) Carbon dots coated with molecularly imprinted polymers: a facile bioprobe for fluorescent determination of caffeic acid. J Colloid Interface Sci 529:568–574. https://doi.org/10.1016/j.jcis.2018.06.050

    Article  CAS  PubMed  Google Scholar 

  18. Zhu XC, Han LX, Liu HL, Sun BG (2022) A smartphone-based ratiometric fluorescent sensing system for on-site detection of pyrethroids by using blue-green dual-emission carbon dots. Food Chem 379:132154. https://doi.org/10.1016/j.foodchem.2022.132154

    Article  CAS  PubMed  Google Scholar 

  19. BelBruno JJ (2019) Molecularly imprinted polymers. Chem Rev 119(1):94–119. https://doi.org/10.1021/acs.chemrev.8b00171

    Article  CAS  PubMed  Google Scholar 

  20. Kazemifard N, Ensafi AA, Rezaei B (2020) Green synthesized carbon dots embedded in silica molecularly imprinted polymers, characterization and application as a rapid and selective fluorimetric sensor for determination of thiabendazole in juices. Food Chem 310:125812. https://doi.org/10.1016/j.foodchem.2019.125812

    Article  CAS  PubMed  Google Scholar 

  21. Zhou X, Gao XX, Liu MH, Wang CP, Chu FX (2017) A poly (5-indolylboronic acid) based molecular imprint doped with carbon dots for fluorometric determination of glucose. Microchim Acta 184(10):4175–4181. https://doi.org/10.1007/s00604-017-2448-0

    Article  CAS  Google Scholar 

  22. Sobiech M, Luliński P, Wieczorek PP, Marć M (2021) Quantum and carbon dots conjugated molecularly imprinted polymers as advanced nanomaterials for selective recognition of analytes in environmental, food and biomedical applications. TrAC Trends Anal Chem 142:116306. https://doi.org/10.1016/j.trac.2021.116306

    Article  CAS  Google Scholar 

  23. Jalili R, Khataee A (2020) Application of molecularly imprinted polymers and dual-emission carbon dots hybrid for ratiometric determination of chloramphenicol in milk. Food Chem Toxicol 146:111806. https://doi.org/10.1016/j.fct.2020.111806

    Article  CAS  PubMed  Google Scholar 

  24. Jud P, Sourij H (2019) Therapeutic options to reduce advanced glycation end products in patients with diabetes mellitus: a review. Diabetes Res Clin Pract 148:54–63. https://doi.org/10.1016/j.diabres.2018.11.016

    Article  CAS  PubMed  Google Scholar 

  25. Pastino AK, Greco TM, Mathias RA, Cristea IM, Schwarzbauer JE (2017) Stimulatory effects of advanced glycation endproducts (AGEs) on fibronectin matrix assembly. Matrix Biol 59:39–53. https://doi.org/10.1016/j.matbio.2016.07.003

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Y, Li S, Ma XT, He XW, Li WY, Zhang YK (2020) Carbon dots-embedded epitope imprinted polymer for targeted fluorescence imaging of cervical cancer via recognition of epidermal growth factor receptor. Microchim Acta 187:228. https://doi.org/10.1007/s00604-020-4198-7

  27. Chemtob A, Ni LL, Croutxe-Barghorn C, Boury B (2014) Ordered hybrids from template-free organosilane self-assembly. Chem A Eur J 20(7):1790–1806. https://doi.org/10.1002/chem.201303070

    Article  CAS  Google Scholar 

  28. Zu FL, Yan FY, Bai ZJ, Xu JX, Wang YY, Huang YC, Zhou XG (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 18(7):1899–1914. https://doi.org/10.1007/s00604-017-2318-9

    Article  CAS  Google Scholar 

  29. Luo XL, Han Y, Chen XM, Tang WZ, Yue TL, Li ZH (2020) Carbon dots derived fluorescent nanosensors as versatile tools for food quality and safety assessment: a review. Trends Food Sci Technol 95:149–161. https://doi.org/10.1016/j.tifs.2019.11.017

    Article  CAS  Google Scholar 

  30. Mao Y, Bao Y, Han DX, Li FH, Niu L (2012) Efficient one-pot synthesis of molecularly imprinted silica nanospheres embedded carbon dots for fluorescent dopamine optosensing. Biosens Bioelectron 38(1):55–60. https://doi.org/10.1016/j.bios.2012.04.043

    Article  CAS  PubMed  Google Scholar 

  31. Han LX, Meng C, Zhang DW, Liu HL, Sun BG (2022) Fabrication of a fluorescence probe via molecularly imprinted polymers on carbazole-based covalent organic frameworks for optosensing of ethyl carbamate in fermented alcoholic beverages. Anal Chim Acta 1192:339381. https://doi.org/10.1016/j.aca.2021.339381

  32. Zhu XC, Yuan XY, Han LX, Liu HL, Sun BG (2021) A smartphone-integrated optosensing platform based on red-emission carbon dots for real-time detection of pyrethroids. Biosens Bioelectron 191:113460. https://doi.org/10.1016/j.bios.2021.113460

  33. Zhang Y, Xu YQ, Liu HL, Sun BG (2022) Ultrahigh sensitivity nitrogen-doping carbon nanotubes-based metamaterial-free flexible terahertz sensing platform for insecticides detection. Food Chem 394:133467–133467. https://doi.org/10.1016/j.foodchem.2022.133467

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 32072335) and the Cultivation Project of Double First-Class Disciplines of Food Science and Engineering, Beijing Technology & Business University (BTBU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huilin Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2563 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, C., He, J., Meng, C. et al. Red emissive N-doped carbon dots encapsulated within molecularly imprinted polymers for optosensing of pyrraline in fatty foods. Microchim Acta 190, 88 (2023). https://doi.org/10.1007/s00604-023-05669-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05669-3

Keywords

Navigation