Skip to main content

Advertisement

Log in

Biomimetic nanochannels for molybdate transport: application to sensitive electrochemical immunoassay for HER2

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A nanochannel-based electrochemical immunoassay was developed for the detection of human epidermal growth factor receptor 2 (HER2), with molybdate as the reporter to explore the interaction occurring into the nanochannels. The presence of target increased steric hindrance of the antibody-functionalized nanochannels, thereby hindering the transport of molybdate. And the reporter could be monitored by working electrode modified with hydroxyapatite nanoparticles, based on the formation of the redox-active molybdophosphate. As a result, peak current obtained at ca. − 0.28 V in square wave voltammograms could be applied to quantitative determination of HER2. The electrochemical signal increased linearly with the logarithm of the concentration of HER2 in a broad dynamic range of 0.1 pg∙mL−1 to 10 ng∙mL−1 with a detection limit of 0.05 pg∙mL−1. The reliability of this immunoassay was validated by a recovery range of 99.5% to 111.7% for the detection of three different levels of HER2 in human serum samples. Integrating with multiple bionanochannels, this immunoassay is expected to provide a versatile approach for quantitative detection of various biomarkers in related disease diagnosis and therapy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li X-Q, Shen C-C, Yang M-H, Rasooly A (2018) Polycytosine DNA electric-current-generated immunosensor for electrochemical detection of human epidermal growth factor receptor 2 (HER2). Anal Chem 90:4764–4769

    Article  CAS  Google Scholar 

  2. Zhang F-H, Yin J-W, Zhang C, Han M-N, Wang X-M, Fu S-Q, Du J, Zhang H-L, Li W (2020) Affibody-conjugated RALA polymers delivering oligomeric 5-fluorodeoxyuridine for targeted therapy of HER2 overexpressing gastric cancer. Macromol Biosci 20:e2000083

    Article  Google Scholar 

  3. Rostamabadi P-F, Heydari-Bafrooei E (2019) Impedimetric aptasensing of the breast cancer biomarker HER2 using a glassy carbon electrode modified with gold nanoparticles in a composite consisting of electrochemically reduced graphene oxide and single-walled carbon nanotubes. Microchim Acta 186:495–503

    Article  CAS  Google Scholar 

  4. Perez E-A, Cortes J, Gonzalez-Angulo A-M, Bartlett J-M (2014) HER2 testing: current status and future directions. Cancer Treat Rev 40:276–284

    Article  CAS  Google Scholar 

  5. Xu B, Shen J-G, Guo W-H, Zhao W-H, Zhuang Y-Y, Wang L-B (2019) Impact of the 2018 ASCO/CAP HER2 guidelines update for HER2 testing by FISH in breast cancer. Pathol Res Pract 215:251–255

    Article  CAS  Google Scholar 

  6. Guerrero-Esteban T, Gutiérrez-Sánchez C, García-Mendiola T, Revenga-Parra M, Pariente F, Lorenzo E (2021) Bifunctional carbon nanodots for highly sensitive HER2 determination based on electrochemiluminescence. Sens Actuators B-Chem 343:130096

    Article  CAS  Google Scholar 

  7. Shen C-C, Zeng K, Luo J-J, Li X-Q, Yang M-H, Rasooly A (2017) Self-assembled DNA generated electric current biosensor for HER2 analysis. Anal Chem 89:10264–10269

    Article  CAS  Google Scholar 

  8. Ding J, Zhou Y, Li J-J, Jiang L-P, He Z-W, Zhu J-J (2015) Screening of HER2 overexpressed breast cancer subtype in vivo by the validation of high-performance, long-term, and noninvasive fluorescence tracer. Anal Chem 87:12290–12297

    Article  CAS  Google Scholar 

  9. Kao K-J, Tai C-H, Chang W-H, Yeh T-S, Chen T-C, Lee G-B (2015) A fluorescence in situ hybridization (FISH) microfluidic platform for detection of HER2 amplification in cancer cells. Biosens Bioelectron 69:272–279

    Article  CAS  Google Scholar 

  10. Chai Y-L, Li X-Q, Yang M-H (2019) Aptamer based determination of the cancer biomarker HER2 by using phosphate-functionalized MnO2 nanosheets as the electrochemical probe. Microchim Acta 186:316–321

    Article  Google Scholar 

  11. Shen C-C, Liu S-P, Li X-Q, Zhao D, Yang M-H (2018) Immunoelectrochemical detection of the human epidermal growth factor receptor 2 (HER2) via gold nanoparticle-based rolling circle amplification. Microchim Acta 185:547–554

    Article  Google Scholar 

  12. Sharma S, Zapatero-Rodríguez J, Saxena R, O’Kennedy R, Srivastava S (2018) Ultrasensitive direct impedimetric immunosensor for detection of serum HER2. Biosens Bioelectron 106:78–85

    Article  CAS  Google Scholar 

  13. BurcuBahadir E, Kemal Sezginturk M (2015) Applications of electrochemical immunosensors for early clinical diagnostics. Talanta 132:162–174

    Article  CAS  Google Scholar 

  14. Lah Z, Ahmad S, Zaini M, Kamarudin M (2019) An electrochemical sandwich immunosensor for the detection of HER2 using antibody-conjugated PbS quantum dot as a label. J Pharm Biomed Anal 174:608–617

    Article  CAS  Google Scholar 

  15. Rai V, Deng J-J, Toh C (2012) Electrochemical nanoporous alumina membrane-based label-free DNA biosensor for the detection of Legionella sp. Talanta 98:112–117

    Article  CAS  Google Scholar 

  16. Liu Y, Fan J-H, Yang H-T, Xu E-S, Wei W, Zhang Y-J, Liu S-Q (2018) Detection of PARP-1 activity based on hyperbranched-poly (ADP-ribose) polymers responsive current in artificial nanochannels. Biosens Bioelectron 113:136–141

    Article  CAS  Google Scholar 

  17. Wang J, Hou J, Zhang H-C, Tian Y, Jiang L (2018) Single nanochannel-aptamer-based biosensor for ultrasensitive and selective cocaine detection. ACS Appl Mater Inter 10:2033–2039

    Article  CAS  Google Scholar 

  18. Jiang Z-L, Jiao J, Li J-J, Zhang H-F, Zheng J-B (2021) Novel electrochemical biosensing platform for microRNA: bivalent recognition-induced nanoparticle amplification occurred in nanochannels. Sens Actuators B-Chem 344:130209

    Article  CAS  Google Scholar 

  19. Zhao F, Zhang H-F, Zheng J-B (2021) Novel electrochemical biosensing platform for microRNA detection based on G-quadruplex formation in nanochannels. Sens Actuators B-Chem 327:128898

    Article  CAS  Google Scholar 

  20. Hu L-S, Hu S-Q, Guo L-Y, Shen C-C, Yang M-H, Rasooly A (2017) DNA generated electric current biosensor. Anal Chem 89:2547–2552

    Article  CAS  Google Scholar 

  21. Xie S, Yuan Y-L, Chai Y-Q, Yuan R (2015) Tracing phosphate ions generated during loop-mediated isothermal amplification for electrochemical detection of nosema bombycis genomic DNA PTP1. Anal Chem 87:10268–10274

    Article  CAS  Google Scholar 

  22. Shen C-C, Li X-Z, Rasooly A, Guo L-Y, Zhang K-N, Yang M-H (2016) A single electrochemical biosensor for detecting the activity and inhibition of both protein kinase and alkaline phosphatase based on phosphate ions induced deposition of redox precipitates. Biosens Bioelectron 85:220–225

    Article  CAS  Google Scholar 

  23. Tan X-F, Zhang L-H, Deng X-B, Miao L-Y, Li H, Zheng G-X (2017) Redox-active molybdophosphate produced by Cu3(PO4)2 nanospheres for enhancing enzyme-free electrochemical immunoassay of C-reactive protein. New J Chem 41:11867–11871

    Article  CAS  Google Scholar 

  24. Sun J-S, Tian D-Z, Guo Q-J, Zhang L, Jiang W-T, Yang M-H (2016) A label-free electrochemical immunosensor for the detection of cancer biomarker α-fetoprotein (AFP) based on hydroxyapatite induced redox current. Anal Methods 8:7319–7323

    Article  CAS  Google Scholar 

  25. Yang J-W, Liang G-Q, Xiang T, Situ W-B (2021) Effect of crosslinking processing on the chemical structure and biocompatibility of a chitosan-based hydrogel. Food Chem 354:129476

    Article  CAS  Google Scholar 

  26. Peng X-Y, Liu X-X, Diamond D, Lau K-T (2011) Synthesis of electrochemically-reduced graphene oxide film with controllable size and thickness and its use in supercapacitor. Carbon 49:3488–3496

    Article  CAS  Google Scholar 

  27. Dong H, Su H-M, Chen Z, Yu H, Yu H-B (2016) Fabrication of electrochemically reduced graphene oxide modified gas diffusion electrode for in-situ electrochemical advanced oxidation process under mild conditions. Electrochim Acta 222:1501–1509

    Article  CAS  Google Scholar 

  28. Tang Y-J, Zhang S-J, Zhong Z-T, Zhang B, Su W-M, Wang G-P, Zhao Y-D (2022) Directional and on-demand ion transport regulated by pH and voltage in submicrochannel heteromembrane based on conducting polymer. Chem Eng J 444:136548

    Article  CAS  Google Scholar 

  29. Schibel AEP, Ervin EN (2015) Decreasing the limits of detection and analysis time of ion current rectification biosensing measurements via a mechanically applied pressure differential. Anal Chem 87:6646–6653

    Article  CAS  Google Scholar 

  30. Li Y-Y, Tu L, Ma X, Chen H, Fan Y-F, Zhou Q, Sun Y (2021) Engineering a smart nanofluidic sensor for high-performance peroxynitrite sensing through a spirocyclic ring open/close reaction strategy. ACS Sens 6:808–814

    Article  CAS  Google Scholar 

  31. Chung S, Moon J-M, Choi J, Hwang H, Shim Y-B (2018) Magnetic force assisted electrochemical sensor for the detection of thrombin with aptamer-antibody sandwich formation. Biosens Bioelectron 117:480–486

    Article  CAS  Google Scholar 

  32. Hou Y-Y, Xu J, Xie W-Z, Huang K-J, Tan X, Zhao B-R, Zhang S-Q, Gao M-T (2022) 3D DNA walker recognition-driven homogeneous dual-mode sensing strategy based on enzyme biofuel cell for ultrasensitive detection of HER2. Sens Actuators B-Chem 376:132998

  33. Wang T, He Y, Shi L, Cao J, Zeng B, Zhao F (2022) BiOBr0.8I0.2/CoSx nanostructure-based photoelectrochemical and electrochemical dual-mode sensing platform for the ultrasensitive and highly selective detection of HER2. ACS Appl Nano Mater 5:15748–15754

    Article  CAS  Google Scholar 

  34. Wang X-Y, Feng Y-G, Wang A-J, Mei L-P, Yuan P-X, Luo X, Feng J-J (2021) A facile ratiometric electrochemical strategy for ultrasensitive monitoring HER2 using polydopamine-grafted-ferrocene/reduced graphene oxide, Au@Ag nanoshuttles and hollow Ni@PtNi yolk-shell nanocages. Sens Actuators B-Chem 331:129460

    Article  CAS  Google Scholar 

  35. Fernandez I, Sanchez A, Diez P, Martinez-Ruiz P, Di Pierro P, Porta R, Villalonga R, Pingarron J-M (2014) Nanochannel-based electrochemical assay for transglutaminase activity. Chem Commun 50:13356–13358

    Article  CAS  Google Scholar 

  36. Escosura-Muniz A, Chunglok W, Surareungchai W, Merkoci A (2013) Nanochannels for diagnostic of thrombin-related diseases in human blood. Biosens Bioelectron 40:24–31

    Article  Google Scholar 

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China (No. 21775120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfang Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3154 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, C., Jiao, J. & Zhang, H. Biomimetic nanochannels for molybdate transport: application to sensitive electrochemical immunoassay for HER2. Microchim Acta 190, 53 (2023). https://doi.org/10.1007/s00604-023-05632-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05632-2

Keywords

Navigation