Skip to main content

Advertisement

Log in

Screening of dopamine in living cells and animal model via graphene quantum dots anchored 3D macroporous nonenzymatic sensor

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A series of three-dimensional copper oxide (CuO) inverse opals anchored with carboxylated graphene quantum dots (CuO/cGQDs) have been fabricated for non-enzymatic tracking of dopamine (DA). Heterostructures composed of various building blocks are promising to construct versatile biosensing platforms. The optimal CuO/cGQDs modified electrode demonstrates sensitivities of 243.45 μA mM−1 cm−2 (50 nM–1888.5 μM) with the practical detection limit as low as 0.5 nM in mimic physiological environment (at + 0.45 V vs. Ag/AgCl). The extraordinary tolerance to various interferents enables the practical detection of intracellular DA amount in human neural cells. On this basis, the proposed biosensor attains precise evaluation of antipsychotic drug effects on stimulated DA release. Particularly, it successfully spots fluctuation of DA in plasma and cerebrospinal fluid in murine model of Parkinson’s disease, which serves as a crucial tool to understand neuropathology and symptomatology of DA-related diseases. This study developed a reliable sensing platform and is expected to be applied to physiological and pathological studies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wise A. Roy (2004). Dopamine, learning and motivation Natural Reviews Neuroscience.5:483–94.

  2. Nagy J, Lee T, Seeman P, Fibiger H (1978) Direct evidence for presynaptic and postsynaptic dopamine receptors in brain. Nature 274:278–281

    Article  CAS  PubMed  Google Scholar 

  3. Noroozifar M, Khorasani-Motlagh M, Akbari R, Parizi MB (2011) Simultaneous and sensitive determination of a quaternary mixture of AA, DA, UA and Trp using a modified GCE by iron ion-doped natrolite zeolite-multiwall carbon nanotube. Biosens Bioelectron 28(1):56–63

    Article  CAS  PubMed  Google Scholar 

  4. Pham Ba VA, Cho D-g, Hong S (2019) Nafion-radical hybrid films on carbon nanotube transistors for monitoring antipsychotic drug effects on stimulated dopamine release. ACS Appl Mater Interfaces 11:9716–9723

    Article  CAS  PubMed  Google Scholar 

  5. Oh J, Lee JS, Jun J, Kim SG, Jang J (2017) Ultrasensitive and selective organic FET-type nonenzymatic dopamine sensor based on platinum nanoparticles-decorated reduced graphene oxide. ACS Appl Mater Interfaces 9:39526–39533

    Article  CAS  PubMed  Google Scholar 

  6. Senel M, Dervisevic M, Alhassen S, Alachkar A, Voelcker NH (2020) Electrochemical micropyramid array-based sensor for in situ monitoring of dopamine released from neuroblastoma cells. Anal Chem 92:7746–7753

    Article  CAS  PubMed  Google Scholar 

  7. Alachkar A, Alhassan S, Senel M (2022) Lab-in-a-syringe: a novel electrochemical biosensor for on-site and real-time monitoring of dopamine in freely behaving mice. ACS sensors 331–37

  8. Senel M, Dervisevic E, Alhassen S, Dervisevic M, Alachkar A, Cadarso VJ et al (2020) Microfluidic electrochemical sensor for cerebrospinal fluid and blood dopamine detection in a mouse model of parkinson’s disease. Anal Chem 92:12347–12355

    Article  CAS  PubMed  Google Scholar 

  9. Zhang X, Zhang CJ, Abas A, Zhang Y, Mu X, Zhou J et al (2019) Ag nanoparticles enhanced vertically-aligned CuO nanowire arrays grown on Cu foam for stable hybrid supercapacitors with high energy density. Electrochim Acta 296:535–544

    Article  CAS  Google Scholar 

  10. Yang S, Sun J, Xu L, Zhou Q, Chen X, Zhu S et al (2020) Au@ ZnO functionalized three–dimensional macroporous WO3: a application of selective H2S gas sensor for exhaled breath biomarker detection. Sensors Actuators B Chem 324:128725

    Article  CAS  Google Scholar 

  11. Ahmadi N, Bagherzadeh M, Nemati A (2020) Comparison between electrochemical and photoelectrochemical detection of dopamine based on titania-ceria-graphene quantum dots nanocomposite. Biosens Bioelectron 151:111977

    Article  CAS  PubMed  Google Scholar 

  12. Jackowska K, Krysinski P (2013) New trends in the electrochemical sensing of dopamine. Anal Bioanal Chem 405:3753–3771

    Article  CAS  PubMed  Google Scholar 

  13. Hashemzadeh N, Hasanzadeh M, Shadjou N, Eivazi-Ziaei J, Khoubnasabjafari M, Jouyban A (2016) Graphene quantum dot modified glassy carbon electrode for the determination of doxorubicin hydrochloride in human plasma. J Pharm Anal 6:235–241

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ben Aoun S (2017) Nanostructured carbon electrode modified with N-doped graphene quantum dots–chitosan nanocomposite: a sensitive electrochemical dopamine sensor. Roy Soc Open Sci 4:171199

    Article  Google Scholar 

  15. Huang Q, Lin X, Tong L, Tong Q-X (2020) Graphene quantum dots/multiwalled carbon nanotubes composite-based electrochemical sensor for detecting dopamine release from living cells. ACS ACS Sustain Chem Eng 8:1644–1650

    Article  Google Scholar 

  16. Imani R, Emami SH, Faghihi S (2015) Nano-graphene oxide carboxylation for efficient bioconjugation applications: a quantitative optimization approach. J Nanopart Res 17:1–15

    Article  CAS  Google Scholar 

  17. Kim J, Jang W, Kim JH, Yang C-M (2021) Synthesis of graphene quantum dots-coated hierarchical CuO microspheres composite for use as binder-free anode for lithium-ion batteries. Compos Part B-Eng 222:109083

    Article  CAS  Google Scholar 

  18. Geim A, Novoselov K (2007) Nature Mater 6:183

    Article  CAS  Google Scholar 

  19. Zhu J, Zeng G, Nie F, Xu X, Chen S, Han Q et al (2010) Decorating graphene oxide with CuO nanoparticles in a water–isopropanol system. Nanoscale 2:988–994

    Article  CAS  PubMed  Google Scholar 

  20. Amara U, Riaz S, Mahmood K, Akhtar N, Nasir M, Hayat A et al (2021) Copper oxide integrated perylene diimide self-assembled graphitic pencil for robust non-enzymatic dopamine detection. RSC Adv 11:25084–25095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Anandan S, Yoon M (2003) Photocatalytic activities of the nano-sized TiO2-supported Y-zeolites. J Photoch Photobio C 4:5–18

    Article  CAS  Google Scholar 

  22. Prajapati AK, Mondal MK (2021) Development of CTAB modified ternary phase α-Fe2O3-Mn2O3-Mn3O4 nanocomposite as innovative super-adsorbent for Congo red dye adsorption. J Environ Chem Eng 9:104827

    Article  CAS  Google Scholar 

  23. Reddy S, Swamy BK, Jayadevappa H (2012) CuO nanoparticle sensor for the electrochemical determination of dopamine. Electrochim Acta 61:78–86

    Article  CAS  Google Scholar 

  24. Huang S, Song L, Xiao Z, Hu Y, Peng M, Li J et al (2016) Graphene quantum dot-decorated mesoporous silica nanoparticles for high aspirin loading capacity and its pH-triggered release. Anal Methods 8:2561–2567

    Article  CAS  Google Scholar 

  25. Wu X, Zhang Y, Han T, Wu H, Guo S, Zhang J (2014) Composite of graphene quantum dots and Fe 3 O 4 nanoparticles: peroxidase activity and application in phenolic compound removal. SC Adv 4:3299–3305

    CAS  Google Scholar 

  26. Zhou X, Xu L, Lv J, Yang S, Zhu S, Chen X et al (2019) Au anchored three-dimensional macroporous NiO@ CuO inverse opals for in-situ sensing of hydrogen peroxide secretion from living cells. Sensors Actuators B Chem 297:126729

    Article  CAS  Google Scholar 

  27. Zhao W, Wang W, Shi H (2020) 2D/2D Z-scheme BiO1-XBr/g-C3N4 heterojunction with rich oxygen vacancies as electron mediator for enhanced visible-light degradation activity. Appl Surf Sci 528:146925

    Article  CAS  Google Scholar 

  28. Dinh LN, Ramana LN, Agarwal V, Zetterlund PB (2020) Miniemulsion polymerization of styrene using carboxylated graphene quantum dots as surfactant. Polym Chem 11:3217–3224

    Article  CAS  Google Scholar 

  29. Zhu M, Kim S, Mao L, Fujitsuka M, Zhang J, Wang X et al (2017) Metal-free photocatalyst for H2 evolution in visible to near-infrared region: black phosphorus/graphitic carbon nitride. J Am Chem Soc 139:13234–13242

    Article  CAS  PubMed  Google Scholar 

  30. Daemi S, Ghasemi S, Ashkarran AA (2019) Electrospun CuO-ZnO nanohybrid: tuning the nanostructure for improved amperometric detection of hydrogen peroxide as a non-enzymatic sensor. J Colloid Interf Sci 550:180–189

    Article  CAS  Google Scholar 

  31. Chen T-W, Chinnapaiyan S, Chen S-M, Ali MA, Elshikh MS, Mahmoud AH (2020) A feasible sonochemical approach to synthesize CuO@ CeO2 nanomaterial and their enhanced non-enzymatic sensor performance towards neurotransmitter. Ultrason Sonochem 63:104903

    Article  CAS  PubMed  Google Scholar 

  32. Emran MY, Shenashen MA, Morita H, El-Safty SA (2018) One-step selective screening of bioactive molecules in living cells using sulfur-doped microporous carbon. Biosens Bioelectron 109:237–245

    Article  CAS  PubMed  Google Scholar 

  33. Paramparambath S, Shafath S, Maurya MR, Cabibihan J-J, Al-Ali A, Malik RA et al (2021) Nonenzymatic electrochemical sensor based on CuO-MgO composite for dopamine detection. IEEE Sens J 21:25597–25605

    Article  CAS  Google Scholar 

  34. Li B, Zhou Y, Wu W, Liu M, Mei S, Zhou Y et al (2015) Highly selective and sensitive determination of dopamine by the novel molecularly imprinted poly (nicotinamide)/CuO nanoparticles modified electrode. Biosens Bioelectron 67:121–128

    Article  CAS  PubMed  Google Scholar 

  35. Xie X, Wang DP, Guo C, Liu Y, Rao Q, Lou F et al (2021) Single-atom ruthenium biomimetic enzyme for simultaneous electrochemical detection of dopamine and uric acid. Anal Chem 93:4916–4923

    Article  CAS  PubMed  Google Scholar 

  36. Zhang W, Jia G, Li Z, Yuan C, Bai Y, Fu D (2017) Selective electrochemical detection of dopamine on polyoxometalate-based metal–organic framework and its composite with reduced graphene oxide. Adv Mater Interfaces 4:1601241

    Article  Google Scholar 

  37. Saraf M, Natarajan K, Saini AK, Mobin SM (2017) Small biomolecule sensors based on an innovative MoS 2–rGO heterostructure modified electrode platform: a binder-free approach. Dalton T 46:15848–15858

    Article  CAS  Google Scholar 

  38. Abdelbasir S, El-Sheikh S, Morgan V, Schmidt H, Casso-Hartmann L, Vanegas D et al (2018) Graphene-anchored cuprous oxide nanoparticles from waste electric cables for electrochemical sensing. ACS Sustain Chem Eng 6:12176–12186

    Article  CAS  Google Scholar 

  39. Kofuji P, Newman E (2004) Potassium buffering in the central nervous system. Neuroscience 129:1043–1054

    Article  Google Scholar 

  40. Miao Y-L, Stein P, Jefferson WN, Padilla-Banks E, Williams CJ (2012) Calcium influx-mediated signaling is required for complete mouse egg activation. Proc Natl Acad Sci 109:4169–4174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Matsuo T, Izumi Y, Wakita S, Kume T, Takada-Takatori Y, Sawada H et al (2010) Haloperidol, spiperone, pimozide and aripiprazole reduce intracellular dopamine content in PC12 cells and rat mesencephalic cultures: implication of inhibition of vesicular transport. Eur J Parm 640:68–74

    Article  CAS  Google Scholar 

  42. Tyler MW, Yourish HB, Ionescu DF, Haggarty SJ (2017) Classics in chemical neuroscience: ketamine. ACS Chem Neurosci 8:1122–1134

    Article  CAS  PubMed  Google Scholar 

  43. Leão AH, Sarmento-Silva AJ, Santos JR, Ribeiro AM, Silva RH (2015) Molecular, neurochemical, and behavioral hallmarks of reserpine as a model for Parkinson’s disease: new perspectives to a long-standing model. Brain Pathol 25:377–390

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Science Foundation of China (82170998 and 61874049), General program of Natural Science Foundation of Jilin Province (20200201356JC, 20200201317JC, 20180101210JC and 20200801017GH), seed grant from Jilin University School of Dentistry, and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Biao Dong, Lin Xu or Lin Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary data to this article can be found online.

Supplementary file1 (DOCX 3423 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Li, Y., Qi, M. et al. Screening of dopamine in living cells and animal model via graphene quantum dots anchored 3D macroporous nonenzymatic sensor. Microchim Acta 189, 382 (2022). https://doi.org/10.1007/s00604-022-05479-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05479-z

Keywords

Navigation