Skip to main content
Log in

AuNP@ZeNose (ZIF-based electrochemical nose) for detection of flu biomarker in breath

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel electrochemical sensor is reported for the detection of isoprene levels in breath using a ZIF-based electrochemical nose. This sensor incorporates a hybrid detection system using gold nanoparticles encapsulated inside the ZIF-8 moiety. Breath-based analysis is widely being used for monitoring the metabolic state of the body. It is associated with the change in the concentration of volatile organic compounds and inorganic gases released endogenously and can be tracked using breath as the sample. One such volatile organic compound, isoprene, has been correlated to the presence of influenza virus or respiratory inflammation. Analytical techniques such as powder X-ray diffraction, scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, and tunneling electron microscopy were used to understand the structural features of the composite. The electrochemical nose system uses chronoamperometry as the transduction mechanism to monitor the diffusion kinetics of the target analyte across the electrode–electrolyte interface. The presented work demonstrates isoprene sensing with high sensitivity and specificity and a detection limit of 10 parts per billion in air. We successfully demonstrate the functionality of the ZIF-based electrochemical nose for point-of-care screening of isoprene levels by developing a prototype device using a commercially available development board. We foresee that the developed sensing platform can help in early screening for the presence of influenza virus and help control the infection rate.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Montuschi P (2007) Review: Analysis of exhaled breath condensate in respiratory medicine: methodological aspects and potential clinical applications. Ther Adv Respir Dis 1:5–23. https://doi.org/10.1177/1753465807082373

    Article  PubMed  Google Scholar 

  2. Haworth JJ, Pitcher CK, Ferrandino G, et al (2022) Breathing new life into clinical testing and diagnostics: perspectives on volatile biomarkers from breath. Crit Rev Clin Lab Sci 1–20.https://doi.org/10.1080/10408363.2022.2038075

  3. Brinkman P, Ahmed WM, Gómez C et al (2020) Exhaled volatile organic compounds as markers for medication use in asthma. Eur Respir J 55:1900544. https://doi.org/10.1183/13993003.00544-2019

    Article  PubMed  Google Scholar 

  4. van der Schee MP, Paff T, Brinkman P et al (2015) Breathomics in lung disease. Chest 147:224–231. https://doi.org/10.1378/chest.14-0781

    Article  PubMed  Google Scholar 

  5. Gouma P-I, Wang L, Simon S, Stanacevic M (2017) Novel isoprene sensor for a flu virus breath monitor. Sensors 17:199. https://doi.org/10.3390/s17010199

    Article  CAS  PubMed Central  Google Scholar 

  6. Khan A, Staimer N, Tjoa T et al (2013) Relations between isoprene and nitric oxide in exhaled breath and the potential influence of outdoor ozone: a pilot study. J Breath Res 7:36007. https://doi.org/10.1088/1752-7155/7/3/036007

    Article  CAS  Google Scholar 

  7. Salerno-Kennedy R, Cashman KD (2005) Potential applications of breath isoprene as a biomarker in modern medicine: a concise overview. Wien Klin Wochenschr 117:180–186. https://doi.org/10.1007/s00508-005-0336-9

    Article  CAS  PubMed  Google Scholar 

  8. Rattray NJW, Hamrang Z, Trivedi DK et al (2014) Taking your breath away: metabolomics breathes life in to personalized medicine. Trends Biotechnol 32:538–548. https://doi.org/10.1016/j.tibtech.2014.08.003

    Article  CAS  PubMed  Google Scholar 

  9. Jagannath B, Muthukumar S, Prasad S (2018) Electrical double layer modulation of hybrid room temperature ionic liquid/aqueous buffer interface for enhanced sweat based biosensing. Anal Chim Acta 1016:29–39. https://doi.org/10.1016/j.aca.2018.02.013

    Article  CAS  PubMed  Google Scholar 

  10. Upasham S, Banga IK, Jagannath B, et al (2020) Electrochemical impedimetric biosensors, featuring the use of room temperature ionic liquids (RTILs): special focus on non-faradaic sensing. Biosens Bioelectron 112940.https://doi.org/10.1016/j.bios.2020.112940

  11. Banga I, Paul A, Sardesai AU et al (2022) ZeNose/GO hybrid composite for detection of clinically relevant VOCs in lower respiratory tract (Case study using Carene). Mater Lett 307:130975. https://doi.org/10.1016/j.matlet.2021.130975

    Article  CAS  Google Scholar 

  12. Moosavi SM, Nandy A, Jablonka KM et al (2020) Understanding the diversity of the metal-organic framework ecosystem. Nat Commun 11:4068. https://doi.org/10.1038/s41467-020-17755-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science (80–) 341:1230444. https://doi.org/10.1126/science.1230444

    Article  CAS  Google Scholar 

  14. Anik Ü, Timur S, Dursun Z (2019) Metal organic frameworks in electrochemical and optical sensing platforms: a review. Microchim Acta 186:196. https://doi.org/10.1007/s00604-019-3321-0

    Article  CAS  Google Scholar 

  15. Luo W, Zhu C, Su S et al (2010) Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. ACS Nano 4:7451–7458. https://doi.org/10.1021/nn102592h

    Article  CAS  PubMed  Google Scholar 

  16. Wang J, Han G, Wang L et al (2018) ZIF-8 with ferrocene encapsulated: a promising precursor to single-atom Fe embedded nitrogen-doped carbon as highly efficient catalyst for oxygen electroreduction. Small 14:1704282. https://doi.org/10.1002/smll.201704282

    Article  CAS  Google Scholar 

  17. Wang J, Han G, Wang L et al (2018) ZIF-8 with ferrocene encapsulated: a promising precursor to single-atom Fe embedded nitrogen-doped carbon as highly efficient catalyst for oxygen electroreduction. Small 14:e1704282. https://doi.org/10.1002/smll.201704282

    Article  CAS  PubMed  Google Scholar 

  18. Fujie K, Kitagawa H (2016) Ionic liquid transported into metal–organic frameworks. Coord Chem Rev 307:382–390. https://doi.org/10.1016/j.ccr.2015.09.003

    Article  CAS  Google Scholar 

  19. Mohamed AMO, Krokidas P, Economou IG (2020) Encapsulation of [bmim+][Tf2N−] in different ZIF-8 metal analogues and evaluation of their CO2 selectivity over CH4 and N2 using molecular simulation. Mol Syst Des Eng 5:1230–1238. https://doi.org/10.1039/D0ME00021C

    Article  CAS  Google Scholar 

  20. Lu S, Hummel M, Chen K et al (2020) Synthesis of Au@ZIF-8 nanocomposites for enhanced electrochemical detection of dopamine. Electrochem Commun 114:106715. https://doi.org/10.1016/j.elecom.2020.106715

    Article  CAS  Google Scholar 

  21. Paul A, Srivastava DN (2018) Amperometric glucose sensing at nanomolar level using MOF-encapsulated TiO2 platform. ACS Omega 3:14634–14640. https://doi.org/10.1021/acsomega.8b01968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Banga I, Paul A, Muthukumar S, Prasad S (2021) ZENose (ZIF-based electrochemical nose) platform for noninvasive ammonia detection. ACS Appl Mater Interfaces 13:16155–16165. https://doi.org/10.1021/acsami.1c02283

    Article  CAS  PubMed  Google Scholar 

  23. Paul A, Vyas G, Paul P, Srivastava DN (2018) Gold-nanoparticle-encapsulated zif-8 for a mediator-free enzymatic glucose sensor by amperometry. ACS Appl Nano Mater 1:3600–3607. https://doi.org/10.1021/acsanm.8b00748

    Article  CAS  Google Scholar 

  24. Sardesai AU, Dhamu VN, Paul A et al (2020) Design and electrochemical characterization of spiral electrochemical notification coupled electrode (SENCE) platform for biosensing application. Micromachines 11:333. https://doi.org/10.3390/mi11030333

    Article  PubMed Central  Google Scholar 

  25. Kaur H, Mohanta GC, Gupta V et al (2017) Synthesis and characterization of ZIF-8 nanoparticles for controlled release of 6-mercaptopurine drug. J Drug Deliv Sci Technol 41:106–112. https://doi.org/10.1016/j.jddst.2017.07.004

    Article  CAS  Google Scholar 

  26. Banga I, Paul A, Sardesai AU et al (2021) ZEUS (ZIF-based electrochemical ultrasensitive screening) device for isopentane analytics with focus on lung cancer diagnosis. RSC Adv 11:20519–20528. https://doi.org/10.1039/D1RA03093K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ban Y, Li Z, Li Y et al (2015) Confinement of ionic liquids in nanocages: tailoring the molecular sieving properties of ZIF-8 for membrane-based CO 2 capture. Angew Chemie Int Ed 54:15483–15487. https://doi.org/10.1002/anie.201505508

    Article  CAS  Google Scholar 

  28. Silvester DS (2019) New innovations in ionic liquid–based miniaturised amperometric gas sensors. Curr Opin Electrochem 15:7–17. https://doi.org/10.1016/j.coelec.2019.03.001

    Article  CAS  Google Scholar 

  29. Paul A, Muthukumar S, Prasad S (2020) Review—Room-temperature ionic liquids for electrochemical application with special focus on gas sensors. J Electrochem Soc 167:37511. https://doi.org/10.1149/2.0112003JES

    Article  CAS  Google Scholar 

  30. Banga I, Paul A, Sardesai AU et al (2021) M.A.T.H: Methanol vapor analytics through handheld sensing platform. Electrochim Acta 368:137624. https://doi.org/10.1016/j.electacta.2020.137624

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I.B. and A.P. acknowledge Vikram Narayanan Dhamu and Paul Rice for their help and support.

Author information

Authors and Affiliations

Authors

Contributions

S. P., S. M., I. B., and A. P. conceived the theoretical framework of the detection scheme and design of experiments. I. B. performed the sensor functionalization used in the experiments. I. B. performed the experiments. I. B. and A. P. analyzed the experimental data and drafted the paper. A. S. helped in developing the prototype and the data collection.

Corresponding author

Correspondence to Shalini Prasad.

Ethics declarations

Conflict of interest

Shalini Prasad and Sriram Muthukumar have a significant interest in Enlisense LLC, a company that may have a commercial interest in the results of this research and technology. The potential individual conflict of interest has been reviewed and managed by The University of Texas at Dallas and played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4223 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banga, I., Paul, A., Sardesai, A. et al. AuNP@ZeNose (ZIF-based electrochemical nose) for detection of flu biomarker in breath. Microchim Acta 189, 231 (2022). https://doi.org/10.1007/s00604-022-05334-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05334-1

Keywords

Navigation