Skip to main content
Log in

A novel flow injection amperometric method for sensitive determination of total antioxidant capacity at cupric-neocuproine complex modified MWCNT glassy carbon electrode

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel amperometric method is presented for the determination of total antioxidant capacity in flow injection analysis (FIA) system using copper(II)-neocuproine complex modified on Nafion-functionalized multi-walled carbon nanotube-glassy carbon electrode ([Cu(Ncp)22+]/Nf@f-MWCNT/GCE). Cyclic voltammetric studies showed that the modified electrode exhibits a very well-formed reversible redox couple for Cu(II)-/Cu(I)-complex. In addition, the [Cu(Ncp)22+]/[Cu(Ncp)2+] redox pair shows very good electrocatalytic activity towards the oxidation of polyphenolic compounds (PPhCs) such as trolox, catechin, and quercetin due to the enhancement of the anodic peak current of the redox couple in the presence of these analytes. This electrocatalytic oxidation current at the [Cu(Ncp)22+]/Nf@f-MWCNT/GCE was used for flow injection (FI) amperometric determination of PPhCs. FI amperometric-time curves recorded under optimized conditions (applied potential: + 0.6 V vs. Ag/AgCl/KCl(0.10 M), flow rate: 2 mL/min) showed that the proposed electrode had a wide linear range (LR) with a very low detection limit (LOD) for PPhCs. LR and LOD were 0.5–800 and 0.2 µM for trolox, respectively and 0.50–250 and 0.14 µM, respectively, for both quercetin and catechin. This sensitive method was successfully applied to the amperometric measurement of total antioxidant capacity (TAC) of some herbal teas, giving compatible results with the spectrophotometric CUPRAC method. The proposed method gave higher rank to fast-reacting antioxidants; it was equally precise but had a wider linear range and lower LOD than the spectrophotometric CUPRAC assay (e.g., LOD for ascorbic acid and gallic acid were 0.07 and 0.08 μM, respectively), and similar electroanalytical methods using the CUPRAC reagent.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tufan AN, Baki S, Güçlü K, Özyürek M, Apak R (2014) A novel differential pulse voltammetric (DPV) method for measuring the antioxidant capacity of polyphenols-reducing cupric neocuproine complex. J Agric Food Chem 62(29):7111–7117. https://doi.org/10.1021/jf5017797

    Article  CAS  PubMed  Google Scholar 

  2. Pisoschi AM, Cimpeanu C, Predoi G (2015) Electrochemical methods for total antioxidant capacity and its main contributors determination: a review. Open Chem 13(1):824–856. https://doi.org/10.1515/chem-2015-0099

    Article  CAS  Google Scholar 

  3. Apak R, Güçlü K, Özyürek M, Karademir SE (2004) Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem 52(26):7970–7981. https://doi.org/10.1021/jf048741x

    Article  CAS  PubMed  Google Scholar 

  4. Apak R et al (2007) Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 12(7):1496–1547. https://doi.org/10.3390/12071496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. A. P. Lima, W. T. P. dos Santos, E. Nossol, E. M. Richter, and R. A. A. Munoz, “Critical evaluation of voltammetric techniques for antioxidant capacity and activity: presence of alumina on glassy-carbon electrodes alters the results,” Electrochim Acta, vol. 358, 2020, https://doi.org/10.1016/j.electacta.2020.136925.

  6. Haque MA, Morozova K, Ferrentino G, Scampicchio M (2021) Electrochemical methods to evaluate the antioxidant activity and capacity of foods: a review. Electroanalysis 33(6):1419–1435. https://doi.org/10.1002/elan.202060600

    Article  CAS  Google Scholar 

  7. J. Giné Bordonaba and L. A. Terry, “Electrochemical behaviour of polyphenol rich fruit juices using disposable screen-printed carbon electrodes: towards a rapid sensor for antioxidant capacity and individual antioxidants,” Talanta, vol. 90, pp. 38–45, 2012, https://doi.org/10.1016/j.talanta.2011.12.058.

  8. T. Arbneshi et al., “Flow injection amperometric evaluation of trolox equivalent antioxidant capacity of chocolates with different cocoa content at a boron-doped diamond electrode,” Food Technol Biotechnol, vol. 59, no. 2, pp. 194–200, 2021, https://doi.org/10.17113/ftb.59.02.21.6984.

  9. Juarez-Luna PJ, Mendoza S, Cardenas A (2019) Comparison of electrochemical methods using CUPRAC, DPPH, and carbon paste electrodes for the quantification of antioxidants in food oils. Anal Methods 11(45):5755–5760. https://doi.org/10.1039/c9ay01921a

    Article  CAS  Google Scholar 

  10. Ziyatdinova G, Salikhova I, Budnikov H (2014) Chronoamperometric estimation of cognac and brandy antioxidant capacity using MWNT modified glassy carbon electrode. Talanta 125:378–384. https://doi.org/10.1016/j.talanta.2014.03.039

    Article  CAS  PubMed  Google Scholar 

  11. Benbouguerra N, Richard T, Saucier C, Garcia F (2020) Voltammetric behavior, flavanol and anthocyanin contents, and antioxidant capacity of grape skins and seeds during ripening (Vitis vinifera var. merlot, tannat, and syrah). Antioxidants 9(9):1–19. https://doi.org/10.3390/antiox9090800

    Article  CAS  Google Scholar 

  12. Newair EF, Kilmartin PA, Garcia F (2018) Square wave voltammetric analysis of polyphenol content and antioxidant capacity of red wines using glassy carbon and disposable carbon nanotubes modified screen-printed electrodes. Eur Food Res Technol 244(7):1225–1237. https://doi.org/10.1007/s00217-018-3038-z

    Article  CAS  Google Scholar 

  13. F. Banica et al., “Determination of the total polyphenols content and antioxidant activity of Echinacea purpurea extracts using newly manufactured glassy carbon electrodes modified with carbon nanotubes,” Processes, vol. 8, no. 7, 2020, https://doi.org/10.3390/pr8070833.

  14. C. Tortolini, P. Bollella, R. Zumpano, G. Favero, F. Mazzei, and R. Antiochia, “Metal oxide nanoparticle based electrochemical sensor for total antioxidant capacity (TAC) detection in wine samples,” Biosensors, vol. 8, no. 4, 2018, https://doi.org/10.3390/bios8040108.

  15. González-Sánchez MI, Agrisuelas J, Valero E, Compton RG (2017) Measurement of total antioxidant capacity by electrogenerated ıodine at disposable screen printed electrodes. Electroanalysis 29(5):1316–1323. https://doi.org/10.1002/elan.201600797

    Article  CAS  Google Scholar 

  16. Arman A, Üzer A, Sağlam Ş, Erçağ E, Apak R (2019) Indirect electrochemical determination of antioxidant capacity with hexacyanoferrate(III) reduction using a gold nanoparticle-coated o-phenylenediamine-aniline copolymer electrode. Anal Lett 52(8):1282–1297. https://doi.org/10.1080/00032719.2018.1536137

    Article  CAS  Google Scholar 

  17. Cárdenas A, Gómez M, Frontana C (2014) Development of an electrochemical cupric reducing antioxidant capacity method (CUPRAC) for antioxidant analysis. Electrochim Acta 128:113–118. https://doi.org/10.1016/j.electacta.2013.10.191

    Article  CAS  Google Scholar 

  18. A. Cardenas and C. Frontana, “Evaluation of a carbon ink chemically modified electrode incorporating a copper-neocuproine complex for the quantification of antioxidants,” Sensors Actuators, B Chem, vol. 313, no. October 2019, p. 128070, 2020, https://doi.org/10.1016/j.snb.2020.128070.

  19. Cárdenas A, Gómez M, Frontana C (2014) Relationship between the chemical structures of antioxidants and the differences in their cupric ion reducing antioxidant capacity (CUPRAC) by electrochemical methods. J Electroanal Chem 729:116–120. https://doi.org/10.1016/j.jelechem.2014.07.019

    Article  CAS  Google Scholar 

  20. Klayprasert P, Jakmunee J (2018) Flow ınjection amperometric system coupled with a well-plate for fast screening of total antioxidant capacity. Anal Lett 51(12):1854–1873. https://doi.org/10.1080/00032719.2017.1392547

    Article  CAS  Google Scholar 

  21. Tirawattanakoson R, Rattanarat P, Ngamrojanavanich N, Rodthongkum N, Chailapakul O (2016) Free radical scavenger screening of total antioxidant capacity in herb and beverage using graphene/PEDOT: PSS-modified electrochemical sensor. J Electroanal Chem 767:68–75. https://doi.org/10.1016/j.jelechem.2015.11.037

    Article  CAS  Google Scholar 

  22. Amatatongchai M, Laosing S, Chailapakul O, Nacapricha D (2012) Simple flow injection for screening of total antioxidant capacity by amperometric detection of DPPH radical on carbon nanotube modified-glassy carbon electrode. Talanta 97:267–272. https://doi.org/10.1016/j.talanta.2012.04.029

    Article  CAS  PubMed  Google Scholar 

  23. Chan-Eam S, Teerasong S, Damwan K, Nacapricha D, Chaisuksant R (2011) Sequential injection analysis with electrochemical detection as a tool for economic and rapid evaluation of total antioxidant capacity. Talanta 84(5):1350–1354. https://doi.org/10.1016/j.talanta.2011.02.043

    Article  CAS  PubMed  Google Scholar 

  24. Milardovic S, Kereković I, Derrico R, Rumenjak V (2007) A novel method for flow injection analysis of total antioxidant capacity using enzymatically produced ABTS{radical dot}+ and biamperometric detector containing interdigitated electrode. Talanta 71(1):213–220. https://doi.org/10.1016/j.talanta.2006.03.042

    Article  CAS  PubMed  Google Scholar 

  25. S. Ayaz, Y. Dilgin, and R. Apak, “Flow injection amperometric determination of hydrazine at a cupric-neocuproine complex/anionic surfactant modified disposable electrode,” Microchem J, vol. 159, no. June, p. 105457, 2020, https://doi.org/10.1016/j.microc.2020.105457.

  26. Emir G, Dilgin Y, Apak R (2020) A new redox mediator (cupric-neocuproine complex)- modified pencil graphite electrode for the electrocatalytic oxidation of H2O2: a flow ınjection amperometric sensor. ChemElectroChem 7(3):649–658. https://doi.org/10.1002/celc.201901765

    Article  CAS  Google Scholar 

  27. Ayaz S, Dilgin Y, Apak R (2021) Flow injection amperometric sensing of hydroxylamine at a Cu(ii)-neocuproine-functionalized multiwalled carbon nanotube/screen printed carbon electrode. New J Chem 45(20):9143–9151. https://doi.org/10.1039/d1nj00824b

    Article  CAS  Google Scholar 

  28. N. Nontipichet, S. Khumngern, J. Choosang, P. Thavarungkul, P. Kanatharana, and A. Numnuam, “An enzymatic histamine biosensor based on a screen-printed carbon electrode modified with a chitosan–gold nanoparticles composite cryogel on Prussian blue-coated multi-walled carbon nanotubes,” Food Chem, vol. 364, no. March, p. 130396, 2021, https://doi.org/10.1016/j.foodchem.2021.130396.

  29. Apak R, Güçlü K, Özyürek M, Çelik SE (2008) Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim Acta 160(4):413–419. https://doi.org/10.1007/s00604-007-0777-0

    Article  CAS  Google Scholar 

  30. Jerold ZH (1972) Significance testing of the spearman rank correlation coefficient. J Am Stat Assos 67(339):578–580

    Article  Google Scholar 

  31. “Spearman’s correlation,” 2021. https://statstutor.ac.uk/resources/uploaded/spearmans.pdf.

  32. A. Sekher Pannala, T. S. Chan, P. J. O’Brien, and C. A. Rice-Evans, “Flavonoid B-ring chemistry and antioxidant activity: fast reaction kinetics,” Biochem Biophys Res Commun, vol. 282, no. 5, pp. 1161–1168, Apr. 2001, https://doi.org/10.1006/bbrc.2001.4705.

  33. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20(7):933–956. https://doi.org/10.1016/0891-5849(95)02227-9

    Article  CAS  PubMed  Google Scholar 

  34. J. Darkwa and C. M. and R. H. Simoyi, “Antioxidant chemistry reactivity and oxidation of DL-cysteine by some common oxidants,” J Chem Soc Faraday Trans, vol. 94, no. 14, pp. 1971–1978, 1998, https://doi.org/10.1039/a708863i.

  35. Khan MMT, Martell AE (Aug. 1967) Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen. I. Cupric and ferric ion catalyzed oxidation. J Am Chem Soc 89(16):4176–4185. https://doi.org/10.1021/ja00992a036

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This publication has been produced within the scope of the priority field of biotechnology determined and announced by The Turkish Council of Higher Education (YÖK). This study has also been produced from a part of PhD thesis of Selen Ayaz carried out under supervisions of Prof. Dr. Yusuf Dilgin and Prof. Dr. Reşat Apak. PhD Student Selen Ayaz would like to thank YÖK (supported by 100/2000 program) and The Scientific and Technological Research Council of Turkey (TÜBİTAK) (supported by 2211-A program) for the scholarship.

Author information

Authors and Affiliations

Authors

Contributions

Selen Ayaz: conceptualization, methodology, investigation and writing—original draft. Ayşem Arda: investigation, visualization, and results and discussion. Yusuf Dilgin: supervision, writing and funding acquisition. Reşat Apak: supervision, writing—interpreting and editing.

Corresponding authors

Correspondence to Yusuf Dilgin or Reşat Apak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2056 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayaz, S., Üzer, A., Dilgin, Y. et al. A novel flow injection amperometric method for sensitive determination of total antioxidant capacity at cupric-neocuproine complex modified MWCNT glassy carbon electrode. Microchim Acta 189, 167 (2022). https://doi.org/10.1007/s00604-022-05271-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05271-z

Keywords

Navigation