Skip to main content
Log in

Multiplexed and simultaneous biosensing in a 3D-printed portable six-well smartphone operated electrochemiluminescence standalone point-of-care platform

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

3D-printed portable devices have immense and proven potential to transform the field of electrochemiluminescence (ECL) for diverse biochemical applications. 3D printing (3DP) offers unparalleled ability to build tiny devices in a single step with high accuracy and compatibility, and integrability as per the requirement. In this study, for the first time, a six-well 3D-printed closed bipolar electrochemiluminescence (3DP-CBPE-ECL) device has been successfully fabricated and validated by performing single-step detection of various biochemicals such as glucose and choline. Luminol/H2O2-based enzymatic reactions were performed with optimized parameters for selective sensing of glucose and choline. The single-step detection of glucose and choline was accomplished for the linear ranges of 0.1 to 10 mM and 0.1 to 5 mM, with a limit of detections (LODs) of 24 µM and 10 µM, respectively. A smartphone was leveraged to execute multiple activities such as powering the ECL device, capturing ECL images, and calculating the ECL intensity of the obtained ECL signal. The feasibility of a six-well 3DP-CBPE-ECL device was tested by sensing glucose and choline simultaneously in a single device at three different concentrations. Furthermore, the concentration of glucose and choline was calculated in real blood serum using the conventional additive (spiking) method, demonstrating the high practicability of the fabricated ECL device and yielding promising findings. Finally, based on the obtained results and other advantages such as low-cost, fast prototyping and requirement of a minimum sample volume, the fabricated six-well 3DP-CBPE-ECL device has shown potential to be used in the field of biochemical applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dodziuk H (2016) Applications of 3D printing in healthcare. Kardiochirurgia i Torakochirurgia Pol 13:283–293. https://doi.org/10.5114/kitp.2016.62625

    Article  Google Scholar 

  2. Ballard DH, Trace AP, Ali S et al (2018) Clinical applications of 3D printing: primer for radiologists. Acad Radiol 25:52–65. https://doi.org/10.1016/j.acra.2017.08.004

    Article  PubMed  Google Scholar 

  3. Chen G, Xu Y, Kwok PCL, Kang L (2020) Pharmaceutical applications of 3D printing. Addit Manuf 34:101209. https://doi.org/10.1016/j.addma.2020.101209

    Article  CAS  Google Scholar 

  4. He Y, Wu Y, Fu JZ et al (2016) Developments of 3D printing microfluidics and applications in chemistry and biology: a review. Electroanalysis 28:1658–1678. https://doi.org/10.1002/elan.201600043

    Article  CAS  Google Scholar 

  5. Pal A, Amreen K, Dubey SK, Goel S (2021) Highly sensitive and interference-free electrochemical nitrite detection in a 3D printed miniaturized device. IEEE Trans Nanobioscience 20:175–182. https://doi.org/10.1109/TNB.2021.3063730

    Article  PubMed  Google Scholar 

  6. Duong LH, Chen PC (2019) Simple and low-cost production of hybrid 3D-printed microfluidic devices. Biomicrofluidics 13:024108. https://doi.org/10.1063/1.5092529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee JY, An J, Chua CK (2017) Fundamentals and applications of 3D printing for novel materials. Appl Mater Today 7:120–133. https://doi.org/10.1016/j.apmt.2017.02.004

    Article  Google Scholar 

  8. Bhaiyya M, Pattnaik PK, Goel S (2021) Electrochemiluminescence sensing of vitamin­B 12 using laser-induced graphene based bipolar and single electrodes in a 3D-printed portable system. Microfluid Nanofluid. https://doi.org/10.1007/s10404-021-02442-x

    Article  Google Scholar 

  9. Kumar PS, Bhand S, Das AK, Goel S (2022) Microfluidic paper device with on-site heating to produce reactive peroxide species for enhanced smartphone enabled chemiluminescence signal. Talanta 236:122858. https://doi.org/10.1016/J.TALANTA.2021.122858

    Article  CAS  PubMed  Google Scholar 

  10. Richter MM (2004). Electrochemiluminescence (ECL). https://doi.org/10.1016/B978-044453125-4.50009-7

    Article  Google Scholar 

  11. Li H, Bouffier L, Arbault S et al (2017) Spatially-resolved multicolor bipolar electrochemiluminescence. Electrochem commun 77:10–13. https://doi.org/10.1016/j.elecom.2017.02.006

    Article  CAS  Google Scholar 

  12. Bouffier L, Arbault S, Kuhn A, Sojic N (2016) Generation of electrochemiluminescence at bipolar electrodes: concepts and applications. Anal Bioanal Chem 408:7003–7011. https://doi.org/10.1007/s00216-016-9606-9

    Article  CAS  PubMed  Google Scholar 

  13. Chen L, Zhang C, Xing D (2016) Paper-based bipolar electrode-electrochemiluminescence (BPE-ECL) device with battery energy supply and smartphone read-out: a handheld ECL system for biochemical analysis at the point-of-care level. Sensors Actuators B Chem 237:308–317. https://doi.org/10.1016/j.snb.2016.06.105

    Article  CAS  Google Scholar 

  14. Liu R, Zhang C, Liu M (2015) Open bipolar electrode-electrochemiluminescence imaging sensing using paper-based microfluidics. Sensors Actuators B Chem 216:255–262. https://doi.org/10.1016/j.snb.2015.04.014

    Article  CAS  Google Scholar 

  15. Isildak I, Navaeipour F, Afsharan H et al (2020) Electrochemiluminescence methods using CdS quantum dots in aptamer-based thrombin biosensors: a comparative study. Microchim Acta 187:25. https://doi.org/10.1007/s00604-019-3882-y

    Article  CAS  Google Scholar 

  16. Zhang X, Chen C, Li J et al (2013) New insight into a microfluidic-based bipolar system for an electrochemiluminescence sensing platform. Anal Chem 85:5335–5339. https://doi.org/10.1021/ac400805f

    Article  CAS  PubMed  Google Scholar 

  17. Wagh MD, Puneeth SB, Goel S, Sahoo SK (2021) Development of laser-induced graphene-based automated electro microfluidic viscometer for biochemical sensing applications. IEEE Trans Electron Devices 68:5184–5191. https://doi.org/10.1109/TED.2021.3107374

    Article  CAS  Google Scholar 

  18. Guo W, Ding H, Gu C et al (2018) Potential-resolved multicolor electrochemiluminescence for multiplex immunoassay in a single sample. J Am Chem Soc 140:15904–15915. https://doi.org/10.1021/jacs.8b09422

    Article  CAS  PubMed  Google Scholar 

  19. Bhaiyya M, Pattnaik PK, Goel S (2021) Simultaneous detection of vitamin B12 and vitamin C from real samples using miniaturized laser-induced graphene based electrochemiluminescence device with closed bipolar electrode. Sensors Actuators A Phys 331:112831. https://doi.org/10.1016/j.sna.2021.112831

    Article  CAS  Google Scholar 

  20. Bhaiyya M, Pattnaik PK, Goel S (2021) ScienceDirect electrochemistry: a brief review on miniaturized electrochemiluminescence devices: from fabrication to applications. Curr Opin Electrochem 30:100800. https://doi.org/10.1016/j.coelec.2021.100800

    Article  CAS  Google Scholar 

  21. Zhang X, Zhai Q, Xing H et al (2017) Bipolar electrodes with 100% current efficiency for sensors. ACS Sensors 2:320–326. https://doi.org/10.1021/acssensors.7b00031

    Article  CAS  PubMed  Google Scholar 

  22. Zhang R, Liang Y, Su Y et al (2021) Cloth-based closed bipolar electrochemiluminescence DNA sensors (CCBEDSs): a new class of electrochemiluminescence gene sensors. J Lumin 238:118209. https://doi.org/10.1016/j.jlumin.2021.118209

    Article  CAS  Google Scholar 

  23. Liu M, Wang D, Liu C et al (2017) Battery-triggered open wireless electrochemiluminescence in a microfluidic cloth-based bipolar device. Sensors Actuators B Chem 246:327–335. https://doi.org/10.1016/j.snb.2017.02.076

    Article  CAS  Google Scholar 

  24. Zhang X, Li J, Jia X et al (2014) Full-featured electrochemiluminescence sensing platform based on the multichannel closed bipolar system. Anal Chem 86:5595–5599. https://doi.org/10.1021/ac501246k

    Article  CAS  PubMed  Google Scholar 

  25. Bhaiyya M, Rewatkar P, Salve M et al (2020) Miniaturized electrochemiluminescence platform with laser-induced graphene electrodes for multiple biosensing. IEEE Trans Nanobioscience 1241:. https://doi.org/10.1109/TNB.2020.3036642

  26. Bhaiyya M, Kulkarni MB, Pattnaik PK, Goel S (2021) IoT enabled PMT and smartphone based electrochemiluminescence platform to detect choline and dopamine using 3D‐printed closed bipolar electrodes. Luminescence 0–2. https://doi.org/10.1002/bio.4179

  27. Manzanares Palenzuela CL, Novotný F, Krupička P et al (2018) 3D-printed graphene/polylactic acid electrodes promise high sensitivity in electroanalysis. Anal Chem 90:5753–5757. https://doi.org/10.1021/acs.analchem.8b00083

    Article  CAS  PubMed  Google Scholar 

  28. Rewatkar P, Goel S (2019) Next-generation 3D printed microfluidic membraneless enzymatic biofuel cell: cost-effective and rapid approach. IEEE Trans Electron Devices 66:3628–3635. https://doi.org/10.1109/TED.2019.2922424

    Article  CAS  Google Scholar 

  29. Deng S, Lei J, Cheng L et al (2011) Amplified electrochemiluminescence of quantum dots by electrochemically reduced graphene oxide for nanobiosensing of acetylcholine. Biosens Bioelectron 26:4552–4558. https://doi.org/10.1016/J.BIOS.2011.05.023

    Article  CAS  PubMed  Google Scholar 

  30. Marquette CA, Blum LJ (2004) Conducting elastomer surface texturing: a path to electrode spotting: application to the biochip production. Biosens Bioelectron 20:197–203. https://doi.org/10.1016/J.BIOS.2004.01.033

    Article  CAS  PubMed  Google Scholar 

  31. Zhou Z, Xu L, Wu S, Su B (2014) A novel biosensor array with a wheel-like pattern for glucose, lactate and choline based on electrochemiluminescence imaging. Analyst 139:4934–4939. https://doi.org/10.1039/c4an00687a

    Article  CAS  PubMed  Google Scholar 

  32. Wang D, Liu C, Liang Y et al (2018) A simple and sensitive paper-based bipolar electrochemiluminescence biosensor for detection of oxidase-substrate biomarkers in serum. J Electrochem Soc 165:B361–B369. https://doi.org/10.1149/2.0551809jes

    Article  CAS  Google Scholar 

  33. Xiao Y, Xu L, Qi LW (2017) Electrochemiluminescence bipolar electrode array for the multiplexed detection of glucose, lactate and choline based on a versatile enzymatic approach. Talanta 165:577–583. https://doi.org/10.1016/j.talanta.2017.01.019

    Article  CAS  PubMed  Google Scholar 

  34. De Poulpiquet A, Diez-Buitrago B, Dumont Milutinovic M et al (2016) Dual enzymatic detection by bulk electrogenerated chemiluminescence. Anal Chem 88:6585–6592. https://doi.org/10.1021/acs.analchem.6b01434

    Article  PubMed  Google Scholar 

  35. Rafatmah E, Hemmateenejad B (2019) Colorimetric and visual determination of hydrogen peroxide and glucose by applying paper-based closed bipolar electrochemistry. Microchim Acta 186:684. https://doi.org/10.1007/s00604-019-3793-y

    Article  CAS  Google Scholar 

  36. Mohan JM, Amreen K, Kulkarni MB et al (2021) Optimized ink jetted paper device for electroanalytical detection of picric acid. Colloids Surf B Biointerfaces 208:112056. https://doi.org/10.1016/j.colsurfb.2021.112056

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Science and Technology, Science and Engineering Research Board (DST-SERB), Government of India, Grant No. CRG/2019/005468, for funding this research work. The author would also like to acknowledge Central Analytical Laboratory (CAL), BITS Pilani Hyderabad Campus for their assistance in characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanket Goel.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhaiyya, M., Pattnaik, P.K. & Goel, S. Multiplexed and simultaneous biosensing in a 3D-printed portable six-well smartphone operated electrochemiluminescence standalone point-of-care platform. Microchim Acta 189, 79 (2022). https://doi.org/10.1007/s00604-022-05200-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05200-0

Keywords

Navigation