Skip to main content

Advertisement

Log in

Hierarchical flower-like manganese oxide/polystyrene with enhanced oxidase-mimicking performance for sensitive colorimetric detection of glutathione

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Glutathione (GSH) is an important antioxidant and free radical scavenger that converts harmful toxins into harmless substances and excretes them out of the body. In this paper, 3D hierarchical flower-like nanozyme named MnO2/PS (polystyrene) was successfully prepared by template method for the first time. After the systematical studies, MnO2/PS nanozyme was evaluated to possess favorable oxidase activity and direct 3,3′,5,5′-tetramethylbenzidine (TMB) catalytic ability in the near-neutral environment at room temperature. With the addition of different concentrations of GSH, oxidized TMB can be reduced to TMB with the whole process from blue to nearly colorless be observed by naked eyes. In addition, there is a good linear relationship in the range 1–50 μM and a detection limit of 0.08 μM. The method proposed can be successfully applied to the detection of reduced GSH in tablets and injections with good selectivity and high sensitivity. The analysis results exhibited good consistency with the results obtained by HPLC.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Richie JP Jr, Skowronski L, Abraham P, Leutzinger Y (1996) Blood glutathione concentrations in a large-scale human study. Clin Chem 42:64–70

    Article  CAS  Google Scholar 

  2. Zhang SY, Ong CN, Shen HM (2004) Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells. Cancer Lett 208:143–153. https://doi.org/10.1016/j.canlet.2003.11.028

    Article  CAS  PubMed  Google Scholar 

  3. Kanzok SM, Schirmer RH, Turbachova I, Iozef R, Becker K (2000) The thioredoxin system of the malaria parasite Plasmodium falciparum. Glutathione reduction revisited. J Biol Chem 275:40180–40186. https://doi.org/10.1074/jbc.M007633200

    Article  CAS  PubMed  Google Scholar 

  4. Krauth-Siegel RL, Bauer H, Schirmer RH (2005) Dithiol proteins as guardians of the intracellular redox milieu in parasites: old and new drug targets in trypanosomes and malaria-causing plasmodia. Angew Chem Int Ed 44:690–715. https://doi.org/10.1002/anie.200300639

    Article  CAS  Google Scholar 

  5. Haddad JJ, Land SC (2002) Redox signaling-mediated regulation of lipopolysaccharide-induced proinflammatory cytokine biosynthesis in alveolar epithelial cells. Antioxid Redox Signal 4:179–193. https://doi.org/10.1089/152308602753625942

    Article  CAS  PubMed  Google Scholar 

  6. Schmitt B, Vicenzi M, Garrel C, Denis FM (2015) Effects of N-acetylcysteine, oral glutathione (GSH) and a novel sublingual form of GSH on oxidative stress markers: a comparative crossover study. Redox Biol 6:198–205. https://doi.org/10.1016/j.redox.2015.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Campolo J, Bernardi S, Cozzi L, Rocchiccioli S, Dellanoce C, Cecchettini A, Tonini A, Parolini M, De Chiara B, Micheloni G, Pelosi G, Passino C, Giannattasio C, Parodi O (2017) Medium-term effect of sublingual l-glutathione supplementation on flow-mediated dilation in subjects with cardiovascular risk factors. Nutrition 38:41–47. https://doi.org/10.1016/j.nut.2016.12.018

    Article  CAS  PubMed  Google Scholar 

  8. Micke P, Beeh KM, Schlaak JF, Buhl R (2015) Oral supplementation with whey proteins increases plasma glutathione levels of HIV-infected patients. Eur J Clin Invest 31:171–178. https://doi.org/10.1046/j.1365-2362.2001.00781.x

    Article  Google Scholar 

  9. Czuczejko J, Mila-Kierzenkowska C, Szewczyk-Golec K (2019) Plasma α-glutathione S-transferase evaluation in patients with acute and chronic liver injury. Can J Gastroenterol Hepatol 2019:5850787. https://doi.org/10.1155/2019/5850787

    Article  PubMed  PubMed Central  Google Scholar 

  10. González de Vega R, Fernández-Sánchez ML, Fernández JC, Álvarez Menéndez FV, Sanz-Medel A (2016) Selenium levels and glutathione peroxidase activity in the plasma of patients with type II diabetes mellitus. J Trace Elem Med Biol 37:44–49. https://doi.org/10.1016/j.jtemb.2016.06.007

    Article  CAS  PubMed  Google Scholar 

  11. Giustarini D, Dalle-Donne I, Colombo R, Milzani A, Rossi R (2004) An improved HPLC measurement for GSH and GSSG in human blood. Free Radical Biol Med 35:1365–1372. https://doi.org/10.1016/j.freeradbiomed.2003.08.013

    Article  CAS  Google Scholar 

  12. Zheng J, Ma L, Xin B, Olah T, Humphreys WG, Zhu M (2007) Screening and identification of GSH-trapped reactive metabolites using hybrid triple quadruple linear ion trap mass spectrometry. Chemical Research Toxicology 20:757–766. https://doi.org/10.1021/tx600277y

    Article  CAS  Google Scholar 

  13. Dong ZZ, Lu L, Ko CN, Yang C, Li S, Lee MY, Leung CH, Ma DL (2017) A MnO2 nanosheet-assisted GSH detection platform using an iridium (III) complex as a switch-on luminescent probe. Nanoscale 9:4677–4682. https://doi.org/10.1039/c6nr08357a

    Article  CAS  PubMed  Google Scholar 

  14. Liu T, Huo FJ, Li JF, Chao JB, Zhang YB, Yin CX (2016) A fast response and high sensitivity thiol fluorescent probe in living cells. Sens Actuators, B Chem 232:619–624. https://doi.org/10.1016/j.snb.2016.04.014

    Article  CAS  Google Scholar 

  15. Li L, Wang QN, Chen ZB (2019) Colorimetric detection of glutathione based on its inhibitory effect on the peroxidase-mimicking properties of WS2 nanosheets. Microchim Acta 186:257. https://doi.org/10.1007/s00604-019-3365-1

    Article  CAS  Google Scholar 

  16. Musenga A, Mandrioli R, Bonifazi P, Kenndler E, Pompei A, Raggi MA (2007) Sensitive and selective determination of glutathione in probiotic bacteria by capillary electrophoresis-laser induced fluorescence. Anal Bioanal Chem 387:917–924. https://doi.org/10.1007/s00216-006-0980-6

    Article  CAS  PubMed  Google Scholar 

  17. Ge J, Cai R, Chen X, Wu Q, Zhang LL, Jiang Y, Cui C, Wan S, Tan WH (2019) Facile approach to prepare HSA-templated MnO2 nanosheets as oxidase mimic for colorimetric detection of glutathione. Talanta 195:40–45. https://doi.org/10.1016/j.talanta.2018.11.024

    Article  CAS  PubMed  Google Scholar 

  18. Zhang R, Yan XY, Fan KL (2021) Nanozymes inspired by natural enzymes. Accounts of Materials Research 7:534–547. https://doi.org/10.1021/accountsmr.1c00074

    Article  CAS  Google Scholar 

  19. Wei H, Gao LZ, Fan KL, Liu JW, He JY, Qu XG, Dong SJ, Wang EK, Yan XY (2021) Nanozymes: a clear definition with fuzzy edges. Nano Today 40:101269. https://doi.org/10.1016/j.nantod.2021.101269

  20. Wang Q, Zhang X, Huang L, Zhang Z, Dong S (2017) GOx@ZIF-8(NiPd) nanoflower: an artificial enzyme system for tandem catalysis. Angewandte Chemie International Ed in English 56:16082–16085. https://doi.org/10.1002/anie.201710418

    Article  CAS  PubMed  Google Scholar 

  21. Mao Y, Gao S, Yao L, Wang L, Qu H, Wu Y, Chen Y, Zheng L (2021) Single-atom nanozyme enabled fast and highly sensitive colorimetric detection of Cr(VI). J Hazard Mater 408:124898. https://doi.org/10.1016/j.jhazmat.2020.124898

    Article  CAS  PubMed  Google Scholar 

  22. Li Q, Wu F, Ma M, Ji X, Wei LY, Li JY, Ma L (2019) A dual-mode colorimetric sensor based on copper nanoparticles for the detection of mercury-(II) ions. Anal Methods 11:4014–4021. https://doi.org/10.1039/C9AY00843H

    Article  CAS  Google Scholar 

  23. Yang Y, Zhu D, Liu Y, Jiang B, Jiang W, Yan XY, Fan KL (2020) Platinum-carbon-integrated nanozymes for enhanced tumor photodynamic and photothermal therapy. Nanoscale 12:13548–13557. https://doi.org/10.1039/d0nr02800b

    Article  CAS  PubMed  Google Scholar 

  24. Chen XJ, Niu TY, Gao YZ, Liang X, Li SN, hang LY, Li L, Wang TT, Su ZM, Wang CG, (2019) Tunable synthesis of pH-responsive biodegradable ZnO nanospheres assembled from ultrasmall particles for cancer chemotherapy. Chem Eng J 371:443–451. https://doi.org/10.1016/j.cej.2019.04.078

    Article  CAS  Google Scholar 

  25. Wang ZR, Zhang RF, Yan XY, Fan KL (2020) Structure and activity of nanozymes: inspirations for de novo design of nanozymes. Mater Today 41:81–119. https://doi.org/10.1016/j.mattod

    Article  CAS  Google Scholar 

  26. Tang GH, He JY, Liu JW, Yan XY, Fan KL (2021) Nanozyme for tumor therapy: surface modification matters. Nano Lett 1:75–89. https://doi.org/10.1002/EXP.20210005

    Article  Google Scholar 

  27. Liu X, Wang Q, Zhang Y, Zhang LC, Su LY, YY, (2013) Colorimetric detection of glutathione in human blood serum based on the reduction of oxidized TMB. New J Chem 37:2174–2178. https://doi.org/10.1039/C3NJ40897C

    Article  CAS  Google Scholar 

  28. Fan LY, Ji XB, Lin GQ, Liu K, Chen SF, Ma GL, Xue WL, Zhang XY, Wang LG (2021) Green synthesis of stable platinum nanoclusters with enhanced peroxidase-like activity for sensitive detection of glucose and glutathione. Microchem J 106:106202. https://doi.org/10.1016/j.microc.2021.106202

    Article  CAS  Google Scholar 

  29. Gao Y, Wu KL, Li HY, Chen W, Fu M, Yue K, Zhu XX, Liu QY (2018) Glutathione detection based on peroxidase-like activity of Co3O4-montmorillonite nanocomposites. Sensors and Actuators 273:1635–1639. https://doi.org/10.1016/j.snb.2018.07.091

    Article  CAS  Google Scholar 

  30. Xia F, Shi QF, Nan ZD (2020) Facile synthesis of Cu-CuFe2O4 nanozymes for sensitive assay of H2O2 and GSH. Dalton Trans 49:12780–12792. https://doi.org/10.1039/D0DT02395G

    Article  CAS  PubMed  Google Scholar 

  31. Dega NK, Ganganboina AB, Tran HL, Kuncoro EP, Doong RA (2022) BSA-stabilized manganese phosphate nanoflower with enhanced nanozyme activity for highly sensitive and rapid detection of glutathione. Talanta 237:122957. https://doi.org/10.1016/j.talanta.2021.122957

    Article  CAS  PubMed  Google Scholar 

  32. Li W, Wang J, Zhu J, Zheng YQ (2018) Co3O4 nanocrystals as an efficient catalase mimic for the colorimetric detection of glutathione. Journal of Materials Chemistry B 6:6858–6864. https://doi.org/10.1039/c8tb01948g

    Article  CAS  PubMed  Google Scholar 

  33. Xi JQ, Zhu CH, Wang YQ, Zhang QN, Fan L (2019) Mn3O4 microspheres as an oxidase mimic for rapid detection of glutathione. RSC Adv 9:16509–16514. https://doi.org/10.1039/C9RA01227C

    Article  CAS  Google Scholar 

  34. Wang YF, Liu XSHJ, Wang MK, Wang XX, Ma WY, Li JY (2020) Facile synthesis of CDs@ZIF-8 nanocomposites as excellent peroxidase mimics for colorimetric detection of H2O2 and glutathione. Sensors and Actuators B Chemical 329:129115–129124. https://doi.org/10.1016/j.snb.2020.129115

    Article  CAS  Google Scholar 

  35. Sun W, Liu H, Peng T, Liu Y, Bai G, Kong S, Guo S, Li M, Zhao XZ (2015) Hierarchical donut-shaped LiMn2O4 as an advanced cathode material for lithium-ion batteries with excellent rate capability and long cycle life. Journal of Materials Chemistry A 3:8165–8170. https://doi.org/10.1039/C5TA00752F

    Article  CAS  Google Scholar 

  36. Gao W, Liu Z, Qi L, Lai J, Kitte SA, Xu G (2016) Ultrasensitive glutathione detection based on lucigenin cathodic electrochemiluminescence in the presence of MnO2 nanosheets. Anal Chem 88:7654–7659. https://doi.org/10.1021/acs.analchem.6b01491

    Article  CAS  PubMed  Google Scholar 

  37. Liu J, Meng L, Fei Z, Dyson PJ, Jing X, Liu X (2017) MnO2 nanosheets as an artificial enzyme to mimic oxidase for rapid and sensitive detection of glutathione. Biosens Bioelectron 90:69–74. https://doi.org/10.1016/j.bios.2016.11.046

    Article  CAS  PubMed  Google Scholar 

  38. Cheng HJ, Lin S, Muhammad F, Lin Y-W, Wei H (2016) Rationally modulate the oxidase-like activity of nanoceria for self-regulated bioassays. ACS Sensors 1:1336–1343. https://doi.org/10.1021/acssensors.6b00500

    Article  CAS  Google Scholar 

  39. Liu J, Meng LJ, Fei ZF, Dyson PJ, Zhang L (2018) On the origin of the synergy between the Pt nanoparticles and MnO2 nanosheets in Wonton-like 3D nanozyme oxidase mimics. Biosens Bioelectron 121:159–165. https://doi.org/10.1016/j.bios.2018.08.004

    Article  CAS  PubMed  Google Scholar 

  40. Parmekar MV (2020) Salker AV (2020) Highly tuned cobalt-doped MnO2 nanozyme as remarkably efficient uricase mimic. Appl Nanosci 10:317–328. https://doi.org/10.1007/s13204-019-01118-x

    Article  CAS  Google Scholar 

  41. Liu X, Wang Q, Zhao HH, Zhang LC, Su YY, Lv Y (2012) BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics. Analyst 137:4552–4558. https://doi.org/10.1039/c2an35700c

    Article  CAS  PubMed  Google Scholar 

  42. Chen LJ, Gao HY, Bai Y, Wei W, Wang JF, Fakhri GE, Wang MY (2020) Colorimetric biosensing of glucose in human serum based on the intrinsic oxidase activity of hollow MnO2 nanoparticles. New J Chem 44:15066–15070. https://doi.org/10.1039/D0NJ02387F

    Article  CAS  Google Scholar 

  43. Bancirova M (2011) Sodium azide as a specific quencher of singlet oxygen during chemiluminescent detection by luminol and Cypridina luciferin analogues. Luminescence 26:685–688. https://doi.org/10.1002/bio.1296

    Article  CAS  PubMed  Google Scholar 

  44. Gültekin I, Tezcanli-Güyer G, Ince NH (2009) Sonochemical decay of C.I. Acid Orange 8: effects of CCl4 and t-butyl alcohol. Ultrason Sonochem 16:577–581. https://doi.org/10.1016/j.ultsonch.2008.12.007

    Article  CAS  PubMed  Google Scholar 

  45. Ma Y, Zhang Z, Ren C, Liu G, Chen X (2012) A novel colorimetric determination of reduced glutathione in A549 cells based on Fe3O4 magnetic nanoparticles as peroxidase mimetics. Analyst 137:485–489. https://doi.org/10.1039/c1an15718c

    Article  CAS  PubMed  Google Scholar 

  46. Zou HY, Yang T, Lan J, Huang CZ (2017) Use of the peroxidase mimetic activity of erythrocyte-like Cu1.8S nanoparticles in the colorimetric determination of glutathione. Anal Methods 9:841–846. https://doi.org/10.1039/C6AY03034C

    Article  CAS  Google Scholar 

  47. Bian B, Liu Q, Yu S (2019) Peroxidase mimetic activity of porphyrin modified ZnFe2O4/reduced graphene oxide and its application for colorimetric detection of H2O2 and glutathione. Colloids Surf, B 181:567–575. https://doi.org/10.1016/j.colsurfb.2019.06.008

    Article  CAS  Google Scholar 

  48. Ni PJ, Sun YJ, Dai HC, Hu JT, Jiang S, Wang YL, Li Z (2015) Highly sensitive and selective colorimetric detection of glutathione based on Ag [I] ion-3,3ʹ,5,5ʹ-tetramethylbenzidine (TMB). Biosens Bioelectron 63:47–52. https://doi.org/10.1016/j.bios.2014.07.021

    Article  CAS  PubMed  Google Scholar 

  49. National Pharmacopoeia Committee. Pharmacopoeia of People’ s Republic of China [ S ]. Part 2. Beijing: China Medical Science and Technology Press, 2020:629.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongri Jin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.47 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Yan, J., Sun, Z. et al. Hierarchical flower-like manganese oxide/polystyrene with enhanced oxidase-mimicking performance for sensitive colorimetric detection of glutathione. Microchim Acta 189, 63 (2022). https://doi.org/10.1007/s00604-021-05136-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05136-x

Keywords

Navigation