Skip to main content
Log in

Entrapment of horseradish peroxidase into nanometer-scale metal–organic frameworks: a new nanocarrier for signal amplification in enzyme-linked immunosorbent assay

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Horseradish peroxidase (HRP) was highly loaded into large holes of nanometer-scale metal–organic frameworks (i.e., PCN-333(Al)) for signal amplification in enzyme-linked immunosorbent assay (ELISA). The enzyme-labeled antibody complex prepared using nanometer-scale PCN-333(Al) maintained a high catalytic efficiency. Its Vm and Kcat values with 3,3',5,5'-Tetramethylbenzidine (TMB)-H2O2 as substrates were 4.84 × 10−5 mM/s and 4.84 × 104 min−1, respectively. We demonstrated an HRP@PCN-333 signal amplification strategy for colorimetric assay of human prostate-specific antigen (PSA). The linear range of PSA detection by using this method was 15–165 pg/mL, and the limit of detection was 6 pg/mL (S/N = 3), indicating the potential application of this method in detecting disease markers under clinical conditions. The presented strategy exhibited the characteristics of significantly increased amount of labeled enzymes, improved stability and utilization of enzymes, simple preparation process of enzyme-labeled antibodies, and low cost.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

taken from the ELISA of PSA at different standard concentrations, (B) corresponding calibration curve (■), and variation profile (□) of the detection results. (C) Calibration curve of PSA detected using an ELISA kit

Similar content being viewed by others

References

  1. Kraaijeveld CA, Reed SE, Macnaughton MR (1980) Enzyme-linked immunosorbent assay for detection of antibody in volunteers experimentally infected with human coronavirus strain 229 E. J Clin Microbiol 12:493–497. https://doi.org/10.1128/jcm.12.4.493-497.1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen Z, Wang H, Zhang Z, Chen L (2019) Chemical Redox-Cycling for Improving the Sensitivity of Colorimetric Enzyme-Linked Immunosorbent Assay. Anal Chem 91:1254–1259. https://doi.org/10.1021/acs.analchem.8b05095

    Article  CAS  PubMed  Google Scholar 

  3. Laing S, Hernandez-Santana A, Sassmannshausen J, Asquith DL, McInnes IB, Faulds K, Graham D (2011) Quantitative detection of human tumor necrosis factor alpha by a resonance raman enzyme-linked immunosorbent assay. Anal Chem 83:297–302. https://doi.org/10.1021/ac1024039

    Article  CAS  PubMed  Google Scholar 

  4. Gao L, Yang Q, Wu P, Li F (2020) Recent advances in nanomaterial-enhanced enzyme-linked immunosorbent assays. Analyst 145:4069–4078. https://doi.org/10.1039/D0AN00597E

    Article  CAS  PubMed  Google Scholar 

  5. Farka Z, Mickert MJ, Pastucha M, Mikusova Z, Skladal P, Gorris HH (2020) Advances in Optical Single-Molecule Detection: En Route to Supersensitive Bioaffinity Assays. Angew Chem Int Ed Engl 59:10746–10773. https://doi.org/10.1002/anie.201913924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li D, Cui Y, Morisseau C, Wagner KM, Cho YS, Hammock BD (2020) Development of a Highly Sensitive Enzyme-Linked Immunosorbent Assay for Mouse Soluble Epoxide Hydrolase Detection by Combining a Polyclonal Capture Antibody with a Nanobody Tracer. Anal Chem 92:11654–11663. https://doi.org/10.1021/acs.analchem.0c01511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang J, Jiao L, Xu W, Fang Q, Wang H, Cai X, Yan H, Gu W, Zhu C (2021) Immobilizing Enzymes on Noble Metal Hydrogel Nanozymes with Synergistically Enhanced Peroxidase Activity for Ultrasensitive Immunoassays by Cascade Signal Amplification. ACS Appl Mater Interfaces 13:33383–33391. https://doi.org/10.1021/acsami.1c09100

    Article  CAS  PubMed  Google Scholar 

  8. Chen Y, Li P, Modica JA, Drout RJ, Farha OK (2018) Acid-Resistant Mesoporous Metal-Organic Framework toward Oral Insulin Delivery: Protein Encapsulation, Protection, and Release. J Am Chem Soc 140:5678–5681. https://doi.org/10.1021/jacs.8b02089

    Article  CAS  PubMed  Google Scholar 

  9. Li Q, Pan Y, Li H, Alhalhooly L, Li Y, Chen B, Choi Y, Yang Z (2020) Size-Tunable Metal-Organic Framework-Coated Magnetic Nanoparticles for Enzyme Encapsulation and Large-Substrate Biocatalysis. ACS Appl Mater Interfaces 12:41794–41801. https://doi.org/10.1021/acsami.0c13148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Balamurugan V, Varghese B, SowjanyaKumari S, Vinod Kumar K, Muthuchelvan D, Nagalingam M, Hemadri D, Roy P, Shome BR (2021) Avidin-Biotin recombinant nucleoprotein competitive ELISA for the detection of peste des petits ruminants virus antibodies in sheep and goats. J Virol Methods 295:114213. https://doi.org/10.1016/j.jviromet.2021.114213

    Article  CAS  PubMed  Google Scholar 

  11. Li J, Liu F, Zhu Z, Liu D, Chen X, Song Y, Zhou L, Yang C (2018) In Situ Pt Staining Method for Simple, Stable, and Sensitive Pressure-Based Bioassays. ACS Appl Mater Interfaces 10:13390–13396. https://doi.org/10.1021/acsami.8b03567

    Article  CAS  PubMed  Google Scholar 

  12. Chen C, Zhao D, Wang B, Ni P, Jiang Y, Zhang C, Yang F, Lu Y, Sun J (2020) Alkaline Phosphatase-Triggered in Situ Formation of Silicon-Containing Nanoparticles for a Fluorometric and Colorimetric Dual-Channel Immunoassay. Anal Chem 92:4639–4646. https://doi.org/10.1021/acs.analchem.0c00224

    Article  CAS  PubMed  Google Scholar 

  13. Gao Z, Lv S, Xu M, Tang D (2017) High-index hk0 faceted platinum concave nanocubes with enhanced peroxidase-like activity for an ultrasensitive colorimetric immunoassay of the human prostate-specific antigen. Analyst 142:911–917. https://doi.org/10.1039/C6AN02722A

    Article  CAS  PubMed  Google Scholar 

  14. Guo L, Xu S, Ma X, Qiu B, Lin Z, Chen G (2016) Dual-color plasmonic enzyme-linked immunosorbent assay based on enzyme-mediated etching of Au nanoparticles. Sci Rep 6:32755. https://doi.org/10.1038/srep32755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ma L, Abugalyon Y, Li X (2021) Multicolorimetric ELISA biosensors on a paper/polymer hybrid analytical device for visual point-of-care detection of infection diseases. Anal Bioanal Chem 413:4655–4663. https://doi.org/10.1007/s00216-021-03359-8

    Article  CAS  PubMed  Google Scholar 

  16. Kaware M, Bronshtein A, Safi J, Van Emon JM, Chuang JC, Hock B, Kramer K, Altstein M (2006) Enzyme-linked immunosorbent assay (ELISA) and sol-gel-based immunoaffinity purification (IAP) of the pyrethroid bioallethrin in food and environmental samples. J Agric Food Chem 54:6482–6492. https://doi.org/10.1021/jf0607415

    Article  CAS  PubMed  Google Scholar 

  17. Delgado M, Lee KJ, Altobell L 3rd, Spanka C, Wentworth P Jr, Janda KD (2002) A parallel approach to the discovery of carrier delivery vehicles to enhance antigen immunogenicity. J Am Chem Soc 124:4946–4947. https://doi.org/10.1021/ja025715b

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Y, Yang J, Nie J, Yang J, Gao D, Zhang L, Li J (2016) Enhanced ELISA using a handheld pH meter and enzyme-coated microparticles for the portable, sensitive detection of proteins. Chem Commun (Camb) 52:3474–3477. https://doi.org/10.1039/C5CC09852A

    Article  CAS  Google Scholar 

  19. Neumann MM, Volodkin D (2020) Porous antibody-containing protein microparticles as novel carriers for ELISA. Analyst 145:1202–1206. https://doi.org/10.1039/C9AN01888C

    Article  CAS  PubMed  Google Scholar 

  20. Wei T, Du D, Zhu MJ, Lin Y, Dai Z (2016) An Improved Ultrasensitive Enzyme-Linked Immunosorbent Assay Using Hydrangea-Like Antibody-Enzyme-Inorganic Three-in-One Nanocomposites. ACS Appl Mater Interfaces 8:6329–6335. https://doi.org/10.1021/acsami.5b11834

    Article  CAS  PubMed  Google Scholar 

  21. Garg M, Sharma AL, Singh S (2021) Advancement in biosensors for inflammatory biomarkers of SARS-CoV-2 during 2019–2020. Biosens Bioelectron 171:112703. https://doi.org/10.1016/j.bios.2020.112703

    Article  CAS  PubMed  Google Scholar 

  22. Cai G, Yan P, Zhang L, Zhou HC, Jiang HL (2021) Metal-Organic Framework-Based Hierarchically Porous Materials: Synthesis and Applications. Chem Rev. https://doi.org/10.1021/acs.chemrev.1c00243

    Article  PubMed  Google Scholar 

  23. Freund R, Zaremba O, Arnauts G, Ameloot R, Skorupskii G, Dinca M, Bavykina A, Gascon J, Ejsmont A, Goscianska J, Kalmutzki M, Lachelt U, Ploetz E, Diercks C, Wuttke S (2021) The Current Status of MOF and COF Applications. Angew Chem Int Ed Engl. https://doi.org/10.1002/anie.202106259

    Article  PubMed  PubMed Central  Google Scholar 

  24. Feng D, Liu TF, Su J, Mathieu B, Wei Z, Wan W, Yuan D, Chen Y, Wang X, Wang K, Lian X, Gu Z, Jihye P, Zou X, Zhou HC (2015) Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation. Nat Commun 6:5979. https://doi.org/10.1038/ncomms6979

    Article  CAS  PubMed  Google Scholar 

  25. Park J, Feng D, Zhou HC (2015) Dual Exchange in PCN-333: A Facile Strategy to Chemically Robust Mesoporous Chromium Metal-Organic Framework with Functional Groups. J Am Chem Soc 137:11801–11809. https://doi.org/10.1021/jacs.5b07373

    Article  CAS  PubMed  Google Scholar 

  26. Zhao M, Li Y, Ma X, Xia M, Zhang Y (2019) Adsorption of cholesterol oxidase and entrapment of horseradish peroxidase in metal-organic frameworks for the colorimetric biosensing of cholesterol. Talanta 200:293–299. https://doi.org/10.1016/j.talanta.2019.03.060

    Article  CAS  PubMed  Google Scholar 

  27. Lian X, Erazo-Oliveras A, Pellois JP, Zhou HC (2017) High efficiency and long-term intracellular activity of an enzymatic nanofactory based on metal-organic frameworks. Nat Commun 8:2075. https://doi.org/10.1038/s41467-017-02103-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Berglund G, Carlsson G, Smith A, Szöke H, Henriksen A, Hajdu J (2002) The catalytic pathway of horseradish peroxidase at high resolution. Nature 417:463–468. https://doi.org/10.1038/417463a

    Article  CAS  PubMed  Google Scholar 

  29. Gajhede M, Schuller D, Henriksen A, Smith AT, Poulos TL (1997) Crystal structure of horseradish peroxidase C at 2.15 A resolution. Nat Struct Mol Biol 4:1032–1038. https://doi.org/10.1038/nsb1297-1032

    Article  CAS  Google Scholar 

  30. Cai X, Xie Z, Li D, Meruyert K, Zang S, Jiang H (2020) Nano-sized metal-organic frameworks: Synthesis and applications. Coord Chem Rev 417:213366. https://doi.org/10.1016/j.ccr.2020.213366

    Article  CAS  Google Scholar 

  31. Melinda S, Nobuhiro Y, Jee A-Y, Steve G (2014) Colloidal-Sized Metal-Organic Frameworks: Synthesis and Applications. Acc Chem Res 47:459–469. https://doi.org/10.1021/ar400151n

    Article  CAS  Google Scholar 

  32. Nguyen TK, Thanh NM, Mahiddine S (2014) Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Chem Rev 114:7610–7630. https://doi.org/10.1021/cr400544s

    Article  CAS  Google Scholar 

  33. Feng D, Chung WC, Wei Z, Gu ZY, Jiang HL, Chen YP, Darensbourg DJ, Zhou HC (2013) Construction of ultrastable porphyrin Zr metal-organic frameworks through linker elimination. J Am Chem Soc 135:17105–17110. https://doi.org/10.1021/ja408084j

    Article  CAS  PubMed  Google Scholar 

  34. Bosch M, Yuan S, Rutledge W, Zhou HC (2017) Stepwise Synthesis of Metal-Organic Frameworks. Acc Chem Res 50:857–865. https://doi.org/10.1021/acs.accounts.6b00457

    Article  CAS  PubMed  Google Scholar 

  35. Wang XG, Cheng Q, Yu Y, Zhang XZ (2018) Controlled Nucleation and Controlled Growth for Size Predicable Synthesis of Nanoscale Metal-Organic Frameworks (MOFs): A General and Scalable Approach. Angew Chem Int Ed Engl 57:7836–7840. https://doi.org/10.1002/anie.201803766

    Article  CAS  PubMed  Google Scholar 

  36. Xia X, Zeng J, Kyle Oetjen L, Li Q, Xia Y (2012) Quantitative Analysis of the Role Played by Poly (vinylpyrrolidone) in Seed-Mediated Growth of Ag Nanocrystals. J Am Chem Soc 134:1793–1801. https://doi.org/10.1021/ja210047e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pu C, Zhao H, Hong Y, Zhan Q, Lan M (2020) Facile Preparation of Hydrophilic Mesoporous Metal-Organic Framework via Synergistic Etching and Surface Functionalization for Glycopeptides Analysis. Anal Chem 92:940–1947. https://doi.org/10.1021/acs.analchem.9b04236

    Article  CAS  Google Scholar 

  38. Li K, Chen C, Chen C, Wang Y, Wei Z, Pan W, Song T (2015) Magnetosomes extracted from Magnetospirillum magneticum strain AMB-1 showed enhanced peroxidase-like activity under visible-light irradiation. Enzyme Microb Technol 72:72–78. https://doi.org/10.1016/j.enzmictec.2015.02.009

    Article  CAS  PubMed  Google Scholar 

  39. Yang J, Xiao X, Xia L, Li G, Shui L (2021) Microfluidic Magnetic Analyte Delivery Technique for Separation, Enrichment, and Fluorescence Detection of Ultratrace Biomarkers. Anal Chem 93:8273–8280. https://doi.org/10.1021/acs.analchem.1c01130

    Article  CAS  PubMed  Google Scholar 

  40. Zhou C, Cui K, Liu Y, Hao S, Zhang L, Ge S, Yu J (2021) Ultrasensitive Microfluidic Paper-Based Electrochemical/Visual Analytical Device via Signal Amplification of Pd@Hollow Zn/Co Core-Shell ZIF67/ZIF8 Nanoparticles for Prostate-Specific Antigen Detection. Anal Chem 93:5459–5467. https://doi.org/10.1021/acs.analchem.0c05134

    Article  CAS  PubMed  Google Scholar 

  41. Xia X, Zhang J, Lu N, Kim MJ, Ghale K, Xu Y, McKenzie E, Liu J, Ye H (2015) Quantitative Analysis of the Role Played by Poly(vinylpyrrolidone) in Seed-Mediated Growth of Ag Nanocrystals. ACS Nano 9:9994–10004. https://doi.org/10.1021/acsnano.5b03525

    Article  CAS  PubMed  Google Scholar 

  42. Ulf-Hakan S, Jari L, Zhang W, Patrik F (1999) Prostate-specific antigen. Semin Cancer Biol 9:83–93. https://doi.org/10.1006/scbi.1998.0086

    Article  Google Scholar 

  43. Mark F, Stricker PD, Kaye KW (1997) Prostate cancer diagnosis and management. Lancet 349:1681–1687. https://doi.org/10.1016/S0140-6736(96)07393-X

    Article  Google Scholar 

Download references

Funding

Supported by the Fundamental Research Funds for the Central Universities (GK2021001007) and the Natural Science Foundation of Shaanxi Province (2018JM2005).

Author information

Authors and Affiliations

Authors

Contributions

Pengyue Sun and Yao Li are the first authors.

Corresponding author

Correspondence to Yaodong Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4461 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, P., Li, Y., Li, J. et al. Entrapment of horseradish peroxidase into nanometer-scale metal–organic frameworks: a new nanocarrier for signal amplification in enzyme-linked immunosorbent assay. Microchim Acta 188, 409 (2021). https://doi.org/10.1007/s00604-021-05065-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05065-9

Keywords

Navigation