Skip to main content
Log in

Impedimetric cardiac biomarker determination in serum mediated by epoxy and hydroxyl of reduced graphene oxide on gold array microelectrodes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A label-free chemical bonding strategy mediated by reduced graphene oxide (rGO) basal plane functional groups has been developed for cardiac Troponin I (cTnI) detection. Four different chemical strategies on respective electrode sensing surface were precedingly examined using electrochemical impedance spectroscopy. The impedimetric assessment was carried out by sweeping frequency at the range 0.1–500 kHz perturbated at a small amplitude of AC voltage (25 mV). The chemical strategy-4 denoted as S-4 shows a significant analytical performance on cTnI detection in spiked buffer and human serum, whereby the pre-mixture of rGO and (3-Aminopropyl)triethoxysilane (APTES) creates a large number of amine sites (−NH2), which significantly enhanced the antibody immobilization without excessive functionalization. The as-fabricated immunosensor exhibited an ultra-low limit of detection of 6.3 ag mL−1 and the lowest antigen concentration measured was at 10 ag mL−1. The immunosensor showed a linear and wide range of cTnI detection (10 ag mL−1–100 ng mL−1) in human serum with a regression coefficient of 0.9716, rapid detection (5 min of binding time), and stable and highly reproducible bioelectrode response with RSD < 5%. Hence, the demonstrated S-4 strategy is highly recommended for other downstream biosensors applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vilian ATE, Kim W, Park B, Oh SY, Kim TY, Huh YS, Hwangbo CK, Han YK (2019) Efficient electron-mediated electrochemical biosensor of gold wire for the rapid detection of C-reactive protein: a predictive strategy for heart failure. Biosens Bioelectron 142:111549. https://doi.org/10.1016/j.bios.2019.111549

    Article  CAS  PubMed  Google Scholar 

  2. Starnberg K, Fridén V, Muslimovic A (2020) A possible mechanism behind faster clearance and higher peak concentrations of cardiac troponin I compared with troponin T in acute myocardial infarction. Clin Chem 66:333–341. https://doi.org/10.1093/clinchem/hvz003

    Article  PubMed  Google Scholar 

  3. Dalila NR, Arshad MKM, Gopinath SCB, Nuzaihan MNM, Fathil MFM (2020) Molybdenum disulfide-gold nanoparticle nanocomposite in field-effect transistor back-gate for enhanced C-reactive protein detection. Microchim Acta 187:588. https://doi.org/10.1007/s00604-020-04562-7

    Article  CAS  Google Scholar 

  4. Ribeiro JA, Pereira CM, Silva AF, Sales MGF (2017) Electrochemical detection of cardiac biomarker myoglobin using polyphenol as imprinted polymer receptor. Anal Chim Acta 981:41–52. https://doi.org/10.1016/j.aca.2017.05.017

    Article  CAS  PubMed  Google Scholar 

  5. World Health Organisation (2018) Noncommunicable diseases country profiles 2018

  6. Taniselass S, Arshad MKM, Gopinath SCB (2019) Graphene-based electrochemical biosensors for monitoring noncommunicable disease biomarkers. Biosens Bioelectron 130:276–292. https://doi.org/10.1016/j.bios.2019.01.047

    Article  CAS  PubMed  Google Scholar 

  7. Wang Y, Hsine Z, Sauriat-Dorizon H, Mlika R, Korri-Youssoufi H (2020) Structural and electrochemical studies of functionalization of reduced graphene oxide with alkoxyphenylporphyrin mono- and tetra-carboxylic acid: application to DNA sensors. Electrochim Acta 357:136852. https://doi.org/10.1016/j.electacta.2020.136852

    Article  CAS  Google Scholar 

  8. Rabchinskii MK, Dideikin AT, Kirilenko (2018) Facile reduction of graphene oxide suspensions and films using glass wafers. Sci Rep 8:1–11. https://doi.org/10.1038/s41598-018-32488-x

    Article  CAS  Google Scholar 

  9. Sethi J, Van Bulck M, Suhail A et al (2020) A label-free biosensor based on graphene and reduced graphene oxide dual-layer for electrochemical determination of beta-amyloid biomarkers. Microchim Acta 187:288. https://doi.org/10.1007/s00604-020-04267-x

    Article  CAS  Google Scholar 

  10. Taniselass S, Md Arshad MK, Gopinath SCB (2019) Current state of green reduction strategies: solution-processed reduced graphene oxide for healthcare biodetection. Mater Sci Eng C 96:904–914. https://doi.org/10.1016/j.msec.2018.11.062

    Article  CAS  Google Scholar 

  11. Choi W, Chun K-Y, Kim J, Han C-S (2017) Ion transport through thermally reduced and mechanically stretched graphene oxide membrane. Carbon N Y 114:377–382. https://doi.org/10.1016/j.carbon.2016.12.041

    Article  CAS  Google Scholar 

  12. Govindasamy M, Wang SF, Pan WC, Subramanian B, Ramalingam RJ, al-lohedan H (2019) Facile sonochemical synthesis of perovskite-type SrTiO3 nanocubes with reduced graphene oxide nanocatalyst for an enhanced electrochemical detection of α-amino acid (tryptophan). Ultrason Sonochem 56:193–199. https://doi.org/10.1016/j.ultsonch.2019.04.004

    Article  CAS  PubMed  Google Scholar 

  13. Vinoth S, Govindasamy M, Wang SF, Anandaraj S (2020) Layered nanocomposite of zinc sulfide covered reduced graphene oxide and their implications for electrocatalytic applications. Ultrason Sonochem 64:105036. https://doi.org/10.1016/j.ultsonch.2020.105036

    Article  CAS  PubMed  Google Scholar 

  14. Wang Y, Chen Y, Lacey SD, Xu L, Xie H, Li T, Danner VA, Hu L (2018) Reduced graphene oxide film with record-high conductivity and mobility. Mater Today 21:186–192. https://doi.org/10.1016/j.mattod.2017.10.008

    Article  CAS  Google Scholar 

  15. Liu J, Yang C, Shang Y, Zhang P, Liu J, Zheng J (2018) Preparation of a nanocomposite material consisting of cuprous oxide, polyaniline and reduced graphene oxide, and its application to the electrochemical determination of hydrogen peroxide. Microchim Acta 185:172. https://doi.org/10.1007/s00604-018-2717-6

    Article  CAS  Google Scholar 

  16. Niu Y, Xie H, Luo G, Zhuang Y, Wu X, Li G, Sun W (2020) ZnO-reduced graphene oxide composite based photoelectrochemical aptasensor for sensitive Cd(II) detection with methylene blue as sensitizer. Anal Chim Acta 1118:1–8. https://doi.org/10.1016/j.aca.2020.04.042, 1

  17. Govindasamy M, Wang SF, Kumaravel S, Ramalingam RJ, al-lohedan HA (2019) Facile synthesis of copper sulfide decorated reduced graphene oxide nanocomposite for high sensitive detection of toxic antibiotic in milk. Ultrason Sonochem 52:382–390. https://doi.org/10.1016/j.ultsonch.2018.12.015

    Article  CAS  PubMed  Google Scholar 

  18. Chauhan D, Nirbhaya V, Mohan C, Chandra R (2020) Nanostructured transition metal chalcogenide embedded on reduced graphene oxide based highly efficient biosensor for cardiovascular disease detection. Microchem J 155:104697. https://doi.org/10.1016/j.microc.2020.104697

    Article  CAS  Google Scholar 

  19. Sandil D, Srivastava S, Malhotra BD, Sharma SC, Puri NK (2018) Biofunctionalized tungsten trioxide-reduced graphene oxide nanocomposites for sensitive electrochemical immunosensing of cardiac biomarker. J Alloys Compd 763:102–110. https://doi.org/10.1016/j.jallcom.2018.04.293

    Article  CAS  Google Scholar 

  20. Li Z, Ma K, Cheng Z et al (2017) Fabrication of electrochemical immunosensor for cardiac biomarker troponin I determination and its potential for acute myocardial infarction diagnosis. Int J Electrochem Sci 12:2389–2399. https://doi.org/10.20964/2017.03.12

    Article  CAS  Google Scholar 

  21. Taniselass S, Arshad MKM, Gopinath SCB, Ramli MM (2020) Self-assembled reduced graphene oxide nanoflakes assisted by post-sonication boosted electrical performance in gold interdigitated microelectrodes. J Colloid Interface Sci 577:345–354. https://doi.org/10.1016/j.jcis.2020.05.070

    Article  CAS  PubMed  Google Scholar 

  22. Randviir EP, Banks CE (2013) Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Anal Methods 5:1098–1115. https://doi.org/10.1039/c3ay26476a

    Article  CAS  Google Scholar 

  23. Uygun ZO, Ertuǧrul Uygun HD (2014) A short footnote: circuit design for faradaic impedimetric sensors and biosensors. Sensors Actuators B Chem 202:448–453. https://doi.org/10.1016/j.snb.2014.05.029

    Article  CAS  Google Scholar 

  24. Wang Y, Ye Z, Ying Y (2012) New trends in impedimetric biosensors for the detection of foodborne pathogenic bacteria. Sensors 12:3449–3471. https://doi.org/10.3390/s120303449

    Article  PubMed  PubMed Central  Google Scholar 

  25. Armbruster DA, Pry T (2008) Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev 29(Suppl 1):S49–S52

    PubMed  PubMed Central  Google Scholar 

  26. Zheng X, Peng Y, Yang Y, Chen J, Tian H, Cui X, Zheng W (2017) Hydrothermal reduction of graphene oxide; effect on surface-enhanced Raman scattering. J Raman Spectrosc 48:97–103. https://doi.org/10.1002/jrs.4998

    Article  CAS  Google Scholar 

  27. Ferrari AC, Meyer JC, Scardaci V (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:1–4. https://doi.org/10.1103/PhysRevLett.97.187401

    Article  CAS  Google Scholar 

  28. Gallerneault M, Truica-Marasescu F, Docoslis A (2018) Influence of dispersion medium on the morphological and physico-chemical characteristics of sprayed graphene oxide-based coatings. Surf Coatings Technol 334:196–203. https://doi.org/10.1016/j.surfcoat.2017.11.030

    Article  CAS  Google Scholar 

  29. Mat Zaid MH, Abdullah J, Yusof NA, Sulaiman Y, Wasoh H, Md Noh MF, Issa R (2017) PNA biosensor based on reduced graphene oxide/water soluble quantum dots for the detection of mycobacterium tuberculosis. Sensors Actuators B Chem 241:1024–1034. https://doi.org/10.1016/j.snb.2016.10.045

    Article  CAS  Google Scholar 

  30. Chua CK, Ambrosi A, Pumera M (2013) Prolonged exposure of graphite oxide to soft X-ray irradiation during XPS measurements leads to alterations of the chemical composition. Analyst 138:7012–7015. https://doi.org/10.1039/c3an00981e

    Article  CAS  PubMed  Google Scholar 

  31. Shin YE, Sa YJ, Park S, Lee J, Shin KH, Joo SH, Ko H (2014) An ice-templated, pH-tunable self-assembly route to hierarchically porous graphene nanoscroll networks. Nanoscale 6:9734–9741. https://doi.org/10.1039/c4nr01988a

    Article  CAS  PubMed  Google Scholar 

  32. Ganguly A, Sharma S, Papakonstantinou P, Hamilton J (2011) Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J Phys Chem C 115:17009–17019. https://doi.org/10.1021/jp203741y

    Article  CAS  Google Scholar 

  33. Zhang J, Xu Y, Liu Z, Yang W, Liu J (2015) A highly conductive porous graphene electrode prepared via in situ reduction of graphene oxide using Cu nanoparticles for the fabrication of high performance supercapacitors. RSC Adv 5:54275–54282. https://doi.org/10.1039/c5ra07857a

    Article  CAS  Google Scholar 

  34. Serodre T, Oliveira NAP, Miquita DR, Ferreira M, Santos A, Resende V, Furtado C (2019) Surface silanization of graphene oxide under mild reaction conditions. J Braz Chem Soc 30:2488–2499. https://doi.org/10.21577/0103-5053.20190167

    Article  CAS  Google Scholar 

  35. Dreyer DR, Park S, W CB, S R (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240. https://doi.org/10.1007/978-3-319-15500-5_3

  36. Brennan K, Martin K, FitzGerald SP (2020) A comparison of methods for the isolation and separation of extracellular vesicles from protein and lipid particles in human serum. Sci Rep 10:1–13. https://doi.org/10.1038/s41598-020-57497-7

    Article  CAS  Google Scholar 

  37. Demir Y, Köksal Z (2019) The inhibition effects of some sulfonamides on human serum paraoxonase-1 (hPON1). Pharmacol Reports 71:545–549. https://doi.org/10.1016/j.pharep.2019.02.012

    Article  CAS  Google Scholar 

  38. Aengevaeren VL, Hopman MTE, Thompson PD, Bakker EA, George KP, Thijssen DHJ, Eijsvogels TMH (2019) Exercise-induced cardiac troponin I increase and incident mortality and cardiovascular events. Circulation 140:804–814. https://doi.org/10.1161/CIRCULATIONAHA.119.041627

    Article  PubMed  Google Scholar 

  39. Sandil D, Sharma SC, Puri NK (2019) Protein-functionalized WO3 nanorods-based impedimetric platform for sensitive and label-free detection of a cardiac biomarker. J Mater Res 34:1331–1340. https://doi.org/10.1557/jmr.2018.481

    Article  CAS  Google Scholar 

  40. Chekin F, Vasilescu A, Jijie R, Singh (2018) Sensitive electrochemical detection of cardiac troponin I in serum and saliva by nitrogen-doped porous reduced graphene oxide electrode. Sensors Actuators B Chem 262:180–187. https://doi.org/10.1016/j.snb.2018.01.215

    Article  CAS  Google Scholar 

  41. Grabowska I, Sharma N, Vasilescu (2018) Electrochemical aptamer-based biosensors for the detection of cardiac biomarkers. ACS Omega 3:12010–12018. https://doi.org/10.1021/acsomega.8b01558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Habib S, Ghodsi E, Abdollahi S, Nadri S (2016) Porous graphene oxide nanostructure as an excellent scaffold for label-free electrochemical biosensor : detection of cardiac troponin I. Mater Sci Eng C 69:447–452. https://doi.org/10.1016/j.msec.2016.07.005

    Article  CAS  Google Scholar 

Download references

Funding

The author would like to acknowledge the support from the Ministry of Education Malaysia under grants FRGS/1/2017/STG05/UNIMAP/03/3 and MyPAIR/1/2020/STG05/UNIMAP//1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Khairuddin Md Arshad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1.78 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taniselass, S., Arshad, M.K.M., Gopinath, S.C.B. et al. Impedimetric cardiac biomarker determination in serum mediated by epoxy and hydroxyl of reduced graphene oxide on gold array microelectrodes. Microchim Acta 188, 257 (2021). https://doi.org/10.1007/s00604-021-04922-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04922-x

Keywords

Navigation