Skip to main content
Log in

Detection of silver through amplified quenching of fluorescence from polyvinyl pyrrolidone–stabilized copper nanoclusters

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Silver ion detection with ultra-high sensitivity was established. We synthesized copper nanoclusters (CuNCs) with blue fluorescence through a one-pot process. Instead of a direct quencher toward the CuNCs, silver ions activated the strong oxidation from persulfate and subsequently converted divalent manganese ion into manganese dioxide (MnO2). The surface charges of MnO2 and the CuNCs brought them together and quenched the fluorescence from the latter. Due to silver ions’ role as the catalyst in the process, it cycled and even a small amount leads to a significant fluorescence change. This signaling provided the determination of  silver ions in the range 5 pM~1 nM, with a detection limit of  1.2 pM. The method is selective, and its applicability was validated through practical water sample analyses.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ratte HT (1999) Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18:89–108. https://doi.org/10.1002/etc.5620180112

    Article  CAS  Google Scholar 

  2. Schnizler MK, Bogdan R, Bennert A, Bury NR, Fronius M, Clauss W (2007) Short-term exposure to waterborne free silver has acute effects on membrane current of Xenopus oocytes. Biochim Biophys Acta 1768:317–323. https://doi.org/10.1016/j.bbamem.2006.09.007

    Article  CAS  PubMed  Google Scholar 

  3. Alonso JG, Khan FR, Misra SK, Turmaine M, Smith BD, Rainbow PS, Luoma SN, Jones EV (2011) Cellular internalization of silver nanoparticles in gut epithelia of the estuarine polychaete Nereis diversicolor. Environ Sci Technol 45:4630–4636. https://doi.org/10.1021/es2005122

    Article  CAS  Google Scholar 

  4. Shaw J, Wood C, Birge W, Hogstrand C (1998) Toxicity of silver to the marine teleost (Oligocottus maculosus): effects of salinity and ammonia. Environ Toxicol Chem 17:594–600. https://doi.org/10.1002/etc.5620170410

    Article  CAS  Google Scholar 

  5. Resano M, Aramendía M, Rello L, Calvo ML, Bérail S, Pécheyran C (2013) Direct determination of Cu isotope ratios in dried urine spots by means of fs-LA-MC-ICPMS. Potential to diagnose Wilson’s disease. J Anal At Spectrom 28:98–106. https://doi.org/10.1039/C2JA30262D

    Article  CAS  Google Scholar 

  6. Fu XC, Chen X, Guo Z, Xie CG, Kong LT, Liu JH, Huang XJ (2011) Stripping voltammetric detection of mercury(II) based on a surface ion imprinting strategy in electropolymerized microporous poly (2-mercaptobenzothiazole) films modified glassy carbon electrode. Anal Chim Acta 685:21–28. https://doi.org/10.1016/j.aca.2010.11.02

    Article  CAS  PubMed  Google Scholar 

  7. Liu HW, Chen LL, Xu CY, Li Z, Zhang HY, Zhang XB, Tan WH (2018) Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chem Soc Rev 47:7140–7180. https://doi.org/10.1039/C7CS00862G

    Article  CAS  PubMed  Google Scholar 

  8. Elmizadeh H, Soleimani M, Faridbod F, Bardajee GR (2017) Ligand-capped CdTe quantum dots as a fluorescent nanosensor for detection of copper ions in environmental water sample. J Fluoresc 27:2323–2333. https://doi.org/10.1007/s10895-017-2174-3

    Article  CAS  PubMed  Google Scholar 

  9. Roma LP, Deponte M, Riemer J, Morgan B (2018) Mechanisms and applications of redox-sensitive green fluorescent proteinbased hydrogen peroxide probes. Antioxid Redox Signal 29:552–568. https://doi.org/10.1089/ars.2017.7449

    Article  CAS  PubMed  Google Scholar 

  10. Jin S, Wang SX, Song YB, Zhou M, Zhong J, Zhang J, Xia AD, Pei Y, Chen M, Li P, Zhu MZ (2014) Crystal structure and optical properties of the [Ag62S12(SBut)32]2+ nanocluster with a complete face-centered cubic kernel. J Am Chem Soc 136:15559–15565. https://doi.org/10.1021/ja506773d

    Article  CAS  PubMed  Google Scholar 

  11. Tao Y, Li MQ, Ren JS, Qu XG (2015) Metal nanoclusters: novel probes for diagnostic and therapeutic applications. Chem Soc Rev 44:8636–8663. https://doi.org/10.1039/C5CS00607D

    Article  CAS  PubMed  Google Scholar 

  12. Joshi CP, Bootharaju MS, Bakr OM (2015) Tuning properties in silver clusters. J Phys Chem Lett 6:3023−3035. https://doi.org/10.1021/acs.jpclett.5b00934, 6, 3023, 3035

  13. Huang H, Li H, Feng JJ, Feng H, Wang AJ, Qian ZS (2017) One-pot green synthesis of highly fluorescent glutathione-stabilized copper nanoclusters for Fe3+ sensing. Sens Actuetor B Chem 241:292–297. https://doi.org/10.1016/j.snb.2016.10.086

    Article  CAS  Google Scholar 

  14. Rajamanikandan R, Ilanchelian M (2018) Fluorescence sensing approach for high specific detection of 2,4,6-trinitrophenol using bright cyan blue color-emittive poly(vinylpyrrolidone)-supported copper nanoclusters as a fluorophore. ACS Omega 3:18251–18257. https://doi.org/10.1021/acsomega.8b03065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin YS, Lin YF, Nain A, Huang YF, Cheng HT (2021) A critical review of copper nanoclusters for monitoring of water quality. Sens Actuators Rep 3:100035. https://doi.org/10.1016/j.snr.2021.100035

    Article  Google Scholar 

  16. Wang X, Hu P, Wang ZP, Liu QY, Xu T, Kou MQ, Huang K, Chen PP (2019) A fluorescence strategy for silver ion assay via cation exchange reaction and formation of poly(thymine)-templated copper nanoclusters. Anal Sci 35:917–922. https://doi.org/10.2116/analsci.19p036

    Article  CAS  PubMed  Google Scholar 

  17. Jin JC, Wang BB, Xu ZQ, He XH, Zou HF, Yang QQ, Jiang FL, Liu Y (2018) A novel method for the detection of silver ions with carbon dots: excellent selectivity, fast response, low detection limit and good applicability. Sens Actuetor B Chem 267:627–635. https://doi.org/10.1016/j.snb.2018.04.036

    Article  CAS  Google Scholar 

  18. Wang FY, Lu YX, Chen Y, Sun GW, Liu YY (2018) Colorimetric nanosensor based on the aggregation of AuNP triggered by carbon quantum dots for detection of Ag+ ions. ACS Sustainable Chem 6:3706–3713. https://doi.org/10.1021/acssuschemeng.7b04067

    Article  CAS  Google Scholar 

  19. Sun J, Yue Y, Wang P, He HL, Jin YD (2013) Facile and rapid synthesis of water-soluble fluorescent gold nanoclusters for sensitive and selective detection of Ag+. J Mater Chem C 1:908–913. https://doi.org/10.1039/C2TC00207H

    Article  CAS  Google Scholar 

  20. Wang ZG, Susha AS, Chen BK, Reckmeier C, Tomanec O, Zboril R, Zhong HZ, Rogach AL (2016) Poly(vinylpyrrolidone) supported copper nanoclusters: glutathione enhanced blue photoluminescence for application in phosphor converted light emitting devices. Nanoscale 8:7197–7202. https://doi.org/10.1039/C6NR00806B

    Article  CAS  PubMed  Google Scholar 

  21. An J, Chen RB, Chen MZ, Hu YQ, Lyu Y, Liu YF (2021) An ultrasensitive turn-on ratiometric fluorescent probes for detection of Ag+ based on carbon dots/SiO2 and gold nanoclusters. Sensors Actuators B Chem 329:129097. https://doi.org/10.1016/j.snb.2020.129097

    Article  CAS  Google Scholar 

  22. Li TZ, Wang ZG, Jiang DF, Wang HG, Lai WF, Lv YK, Zhai WQ (2019) A FRET biosensor based on MnO2 nanosphere/copper nanocluster complex: from photoluminescence quenching to recovery and magnifification. Sensors Actuators B Chem 290:535–543. https://doi.org/10.1016/j.snb.2019.04.033

    Article  CAS  Google Scholar 

  23. Gao XH, Lu YZ, Zhang RZ, He SJ, Ju J, Liu MM, Li L, Chen W (2015) One-pot synthesis of carbon nanodots for fluorescence turn-on detection of Ag+ based on the Ag+ -induced enhancement of fluorescence. J Mater Chem C 3:2302–2309. https://doi.org/10.1039/C4TC02582B

    Article  CAS  Google Scholar 

  24. Bian J, Xia YX, Sang LY, Zhu CX, Li YX, Li GY, Liu XY, Wang X, Liu Y (2020) A recyclable colorimetric probe: in situ fabrication of highly stable HPEI–AuNPs for selective Ag+ detection. New J Chem 44:5438–5447. https://doi.org/10.1039/D0NJ00497A

    Article  CAS  Google Scholar 

  25. Wang XY, Su Z, Li L, Tu YF, Yan JL (2020) Sensitive detection of molybdenum through its catalysis and quenching of gold nanocluster fluorescence Spectrochim. Spectroc Acta Pt A Molec Biomolec Spectr 229:117909. https://doi.org/10.1016/j.saa.2019.117909

    Article  CAS  Google Scholar 

  26. He DG, He XX, Wang KM, Yang X, Yang XX, Li XC, Zou Z (2014) Nanometersized manganese oxide-quenched fluorescent oligonucleotides: an effective sensing platform for probing biomolecular interactions. Chem Commun 50:11049–11052. https://doi.org/10.1039/C4CC04573D

    Article  CAS  Google Scholar 

  27. Wang HB, Chen Y, Li N, Liu YM (2017) A fluorescent glucose bioassay based on the hydrogen peroxide-induced decomposition of a quencher system composed of MnO2 nanosheets and copper nanoclusters. Microchim Acta 184:515–523. https://doi.org/10.1007/s00604-016-2045-7

    Article  CAS  Google Scholar 

  28. Zhang YY, Li YX, Zhang CY, Zhang QF, Huang XN, Yang MD, Shahzad SA, Lo KKW, Yu C, Jiang SC (2017) Fluorescence turn-on detection of alkaline phosphatase activity based on controlled release of PEI-capped Cu nanoclusters from MnO2 nanosheets. Anal Bioanal Chem 409:4771–4778. https://doi.org/10.1007/s00216-017-0420-9

    Article  CAS  PubMed  Google Scholar 

  29. Luo MC, Di JW, Li L, Tu YF, Yan JL (2018) Copper ion detection with improved sensitivity through catalytic quenching of gold nanocluster fluorescence. Talanta 187:231–236. https://doi.org/10.1016/j.talanta.2018.05.047

    Article  CAS  PubMed  Google Scholar 

  30. Lin T, Yu L, Sun M, Cheng G, Lan B, Fu ZW (2016) Mesoporous a-MnO2 microspheres with high specific surface area: controlled synthesis and catalytic activities. Chem Eng J 286:114–121. https://doi.org/10.1016/j.cej.2015.09.024

    Article  CAS  Google Scholar 

  31. Xu G, Wang GF, He XP, Zhu YH, Chen L, Zhang XJ (2013) An ultrasensitive electrochemical method for detection of Ag+ based on cyclic amplification of exonuclease III activity on cytosine–Ag+–cytosine. Analyst 138:6900–6906. https://doi.org/10.1039/C3AN01320K

    Article  CAS  PubMed  Google Scholar 

  32. House DA (1962) Kinetics and mechanism of oxidations by peroxydisulfate. Chem Rev 62:185–203. https://doi.org/10.1021/cr60217a001

    Article  CAS  Google Scholar 

  33. Akiho H, Ito S, Matsuda H, Yoshioka H (2013) Elucidation of the mechanism of reaction between S2O82−, selenite and Mn2+ in aqueous solution and limestone-gypsum FGD liquor. Environ Sci Technol 47:11311–11317. https://doi.org/10.1021/es3042302

    Article  CAS  PubMed  Google Scholar 

  34. Liu XX, Li W, Shen QP, Nie Z, Guo ML, Han YT, Liu W, Yao SZ (2011) The Ag+–G interaction inhibits the electrocatalytic oxidation of guanine – a novelmechanism for Ag+ detection. Talanta 85:1603–1608. https://doi.org/10.1016/j.talanta.2011.06.061

    Article  CAS  PubMed  Google Scholar 

  35. Chang YQ, Zhang Z, Hao JH, Yang WS, Tang JL (2016) BSA-stabilized Au clusters as peroxidase mimetic for colorimetric detection of Ag+. Sens Actuetor B Chem 232:692–697. https://doi.org/10.1016/j.snb.2016.04.039

    Article  CAS  Google Scholar 

  36. Li CR, Hai J, Fan L, Li SL, Wang BD, Yang ZY (2019) Amplified colorimetric detection of Ag+ based on Ag+-triggered peroxidase-like catalytic activity of ZIF-8/GO nanosheets. Sens Actuetor B Chem 284:213–219. https://doi.org/10.1016/j.snb.2018.12.137

    Article  CAS  Google Scholar 

  37. Bian SY, Shen C, Qian YT, Liu JY, Xi FN, Dong XP (2017) Facile synthesis of sulfur-doped graphene quantum dots as fluorescent sensing probes for Ag+ ions detection. Sens Actuetor B Chem 242:231–237. https://doi.org/10.1016/j.snb.2016.11.044

    Article  CAS  Google Scholar 

  38. Zhang YY, Jiang H, Wang XM (2015) Cytidine-stabilized gold nanocluster as a fluorescence turn-on and turn-off probe for dual functional detection of Ag+ and Hg2+. Anal Chim Acta 22:1–7. https://doi.org/10.1016/j.aca.2015.01.016

    Article  CAS  Google Scholar 

  39. Jiang YL, Kong WW, Shen YM, Wang BX (2015) Two fluorescence turn-on chemosensors based on pyrrolo[2,1-a] isoquinoline for detection of Ag + in aqueous solution. Tetrahedron 34:5584–5588. https://doi.org/10.1016/j.tet.2015.06.055

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Natural Science Foundation of China (No. 21305100) and the Project of Scientific and Technologic Infrastructure of Suzhou (SZS201708).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jilin Yan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 4478 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Zhou, T., Tu, Y. et al. Detection of silver through amplified quenching of fluorescence from polyvinyl pyrrolidone–stabilized copper nanoclusters. Microchim Acta 188, 212 (2021). https://doi.org/10.1007/s00604-021-04873-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04873-3

Keywords

Navigation