Skip to main content
Log in

Hybrid nanostructures of Pd–WO3 grown on graphitic carbon nitride for trace level electrochemical detection of paraoxon-ethyl

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Well-defined crystal structures of Pd-doped WO3 nanorods were assembled on graphitic carbon sheets (Pd−WO3/g-C3N4) for ultrasensitive detection of paraoxon-ethyl (PEL) using an electrochemical method. The electrochemical behavior of PEL on the Pd−WO3/g-C3N4 hybrid composite was investigated using cyclic voltammetry (CV) and amperometric techniques. The Pd−WO3 crystallite was seen to modify the kinetics of g-C3N4, which improved the reduction/redox peak currents of PEL at the Pd–WO3/g-C3N4 composite compared to those of the g-C3N4 and WO3/g-C3N4–modified electrode. Moreover, the π-π interaction and hydrogen bond between the PEL and Pd−WO3/g-C3N4 composite improved the charge-transfer properties. The Pd−WO3/g-C3N4 hybrid composite was therefore able to obtain an enhanced sensitivity (3.70 ± 0.05 μA μM−1 cm−2) and low detection limit (0.03 nM; S/N = 3) with a wide range of linear concentrations (0.01–60 and 80–900.0 ± 5 μM) at applied potential of − 0.63 V (vs. Ag/AgCl). The detection of PEL in agricultural water and soil samples was successfully demonstrated with satisfactory RSD of 2.5 to 3.1% and recovery results of 97 to 102%, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5

Similar content being viewed by others

References

  1. (1998) Organophosphate (Post note 12); Parliamentary Office of Science and Technology: London, UK

  2. Pimenta GG, de Queiroz ME, Victor RP, Noronha LM, Neves AA, Oliveira AFD, Heleno FF (2017) DLLME- GC/ECD method for the residual analysis of parathion-methyl and its application in the study of the UV- photodegradation process. J Braz Chem Soc 28:2045–2053

    CAS  Google Scholar 

  3. Environmental Protection Agency (2000) 4. Summary of the risks and uses of organophosphate parathion methyl; U.S

  4. Karthik R, Kumar JV, Chen SM, Kokulnathan T, Yang HY, Muthuraj V (2018) Design of novel ytterbium molybdate nanoflakes anchored carbon nanofibers: challenging sustainable catalyst for the detection and degradation of assassination weapon (paraoxon- ethyl). ACS Sustain Chem Eng 6:8615–8630

    Article  CAS  Google Scholar 

  5. Tajik S, Beitollahi H, Biparva P (2018) Methyldopa electrochemical sensor based on a glassy carbon electrode modified with Cu/TiO2 nanocomposite. J Serb Chem Soc 83(7–8):863–874

    Article  CAS  Google Scholar 

  6. Baghbamidi SE, Beitollahi H, Tajik S, Hosseinzadeh R (2016) Voltammetric sensor based on 1-benzyl-4- ferrocenyl-1H-[1,2,3]-triazole /carbon nanotube modified glassy carbon electrode; detection of hydrochlorothiazide in the presence of propranolol. Int J Electrochem Sci 11:10874–10883

    Article  CAS  Google Scholar 

  7. Tajik S, Dourandish Z, Zhang K, Beitollahi H, Le QV, Jang HW, Shokouhimehr M (2020) Carbon and graphene quantum dots: a review on syntheses, characterization, biological and sensingapplications for neurotransmitter determination. RSC Adv 10:15406–15429

    Article  CAS  Google Scholar 

  8. Moghaddama HM, Tajik S, Beitollahi H (2019) A new electrochemical DNA biosensor based on modified carbon paste electrode using graphene quantum dots and ionic liquid for determination of topotecan. Microchem J 150:104085

    Article  Google Scholar 

  9. Beitollahi H, Movahedifar F, Tajik S, Jahani S (2019) A review on the effects of introducing CNTs in the modification process of electrochemical sensors. Electroanalysis 31:1195–1203

    Article  CAS  Google Scholar 

  10. Tajik S, Beitollahi H, Nejad FG, Kirlikovali KO, Le QV, Jang HW, Varma RS, Farha OK, Shokouhimehr M (2020) Recent electrochemical applications of metal−organic framework- based materials. Cryst Growth Des 20:7034–7064

    Article  CAS  Google Scholar 

  11. Beitollahi H, Moghaddam HM, Tajik S (2019) Voltammetric determination of bisphenol a in water and juice using a lanthanum (III)-doped cobalt (II,III) nanocube modified carbon screen-printed electrode. Anal Lett 52(9):1432–1444

    Article  CAS  Google Scholar 

  12. Stoytcheva M, Zlatev R, Montero G, Velkova Z, Gochev V (2017) Nanostructured platform for the sensitive determination of paraoxon by using an electrode modified with a film of graphite-immobilized bismuth. Microchim Acta 184:2707–2714

    Article  CAS  Google Scholar 

  13.  Ganjali MR, Salimi H, Tajik S, Beitollahi H, Rezapour M, Larijani B (2017) Application of  Fe3O4@SiO2/MWCNT film on glassy carbon electrode for the sensitive electroanalysis of levodopa. Int J Electrochem Sci 12:5243–5253

  14. Maleh HK, Alizadeh M, Orooji Y, Karimi F, Baghayeri M, Rouhi J, Tajik S, Beitollahi H, Agarwal S, Gupta VK, Rajendran S, Rostamnia S, Fu L, Movahed SF,  Malekmohammadi S (2021) Guanine-based DNA biosensor amplified with Pt/SWCNTs nanocomposite as analytical tool for nanomolar determination of  daunorubicin as an anticancer drug: a docking/experimental investigation. Ind Eng Chem Res 60:816−823

  15.  Mutharani B, Ranganathan P, Chen SM, Karuppiah C (2019) Enzyme-free electrochemical detection of nanomolar levels of the organophosphorus pesticide paraoxon-ethyl by using a poly(N-isopropyl acrylamide)-chitosan microgel decorated with palladium nanoparticles. Microchim Acta 186:167

  16. Zhao Q, Wu W, Wei X , Jiang S, Zhou T, Li Q, Lu Q (2017) Graphitic carbon nitride as electrode sensing  material for tetrabromobisphenol-a determination, Sens. Actuators B 248: 673–681

  17. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:5

  18. Wang X,  Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) Polymer  semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J Am Chem Soc 131:1680–1681

  19. Niu P, Zhang L, Liu G, Cheng H (2012) Graphene‐like carbon nitride nanosheets for improved photocatalytic activities. Adv Funct Mater 22:4763

  20. Wang X, Blechert S, Antonietti M (2012) Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal 2:1596

  21. Malik R, Tomer VK, Chaudhary V, Dahiya MS, Nehra SP, Duhan S, Kailasam K (2018) A low temperature, highly sensitive and fast response toluene gas sensor based on In (III)- SnO2 loaded cubic mesoporous graphitic carbon nitride. Sens Actuators B 255:3564–3575

  22. Qin J, Huo J, Zhang P, Zeng J, Wang T, Zeng H (2016) Improving the photocatalytic hydrogen production of Ag/g-C3N4 nanocomposites by dye-sensitization under visible light irradiation. Nanoscale 8:2249

  23. Malik R, Tomer V K, Kienle L, Chaudhary V, Nehra SP, Duhan S (2018) Retracted: ordered mesoporous Ag–ZnO@g‐CN nanohybrid as highly efficient bifunctional sensing material. Adv Mater Interfaces 25:1701357

  24. Wu Y, Wang T, Zhang Y, Xin S, He X, Zhang D, Shui J (2016) Electrocatalytic performances of g-C3N4-LaNiO3 composite as bi-functional catalysts for lithium-oxygen batteries. Sci Rep 6:24314

  25. Toloman D, Popa A, Stan M, Socaci C, Biris AR, Katona G, Tudorache F, Petrila I, Iacomi F (2017) Reduced graphene oxide decorated with Fe doped SnO2 nanoparticles for humidity sensor. Appl Surf Sci 402:410–417

    Article  CAS  Google Scholar 

  26. Su P, Yang  L (2016) NH3 gas sensor based on Pd/SnO2/RGO ternary composite operated at room temperature. Sens Actuat B 223:202–208

  27. Kaur J, Anand K, Kaur A, Singh RC (2018) Sensitive and selective acetone sensor based on Gd doped WO3/reduced graphene oxide nanocomposite. Sens Actuators B 258:1022–1035

  28. Esfandiar A, Irajizad A,  Akhavan O, Ghasemi S, Gholami MR (2014) Pd- WO3/reduced graphene oxide hierarchical nanostructures as efficient hydrogen gas sensors. Int J Hydrogen Energy 39:8169–8179 

  29. Praveen Kumar M, Murugesan P, Vivek S, Ravichandran S (2017) NiWO3 nanoparticles grown on  graphitic carbon nitride (g-C3N4) supported Toray carbon as an efficient bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Part Part Syst Charact 1700043

  30. Veerakumara P, Rajkumar C, Chen SM, Thirumalraj B, Lin KC (2018) Ultrathin 2D graphitic carbon nitride nanosheets decorated with silver nanoparticles for electrochemical sensing of quercetin. J Electroanal Chem 826:207–216

  31. Karuppasamy L, Chen CY, Anandan S, Wu JJ (2019) Low- and high-index faceted pd nanocrystals embedded  in various oxygen-deficient WOxnanostructures for electrocatalytic oxidation of alcohol (EOA) and carbon monoxide (CO). ACS Appl Mater Interfaces 11:10028−10041

  32. Rajkumar C, Veerakumara P, Chen SM, Thirumalraj B, Lin KC (2018) Ultrathin sulfur-doped graphitic carbon nitride nanosheets as metal-free catalyst for electrochemical sensing and catalytic removal of 4‑nitrophenol. ACS Sustainable Chem Eng 6:16021−16031

  33. Martin DJ, Qiu K, Shevlin SA, Handoko A D, Chen X, Guo Z, Tang J (2014) Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew Chem Int Ed 53:9240−9245  

  34. Alman V, Singh K, Bhat T, Sheikh A, Gokhale S (2020) Sunlight Assisted improved photocatalytic  degradation of rhodamine B using Pd‐loaded g‐C3N4/WO3nanocomposite. Appl Phys A 126:724

Download references

Funding

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT; No. 2019R1A5A808029011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haekyoung Kim.

Ethics declarations

Conflict of interest

The authors declare they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 854 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajkumar, C., Kim, H. Hybrid nanostructures of Pd–WO3 grown on graphitic carbon nitride for trace level electrochemical detection of paraoxon-ethyl. Microchim Acta 188, 233 (2021). https://doi.org/10.1007/s00604-021-04866-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04866-2

Keywords

Navigation