Skip to main content

Advertisement

Log in

Sensitive sandwich-type voltammetric immunosensor for breast cancer biomarker HER2 detection based on gold nanoparticles decorated Cu-MOF and Cu2ZnSnS4 NPs/Pt/g-C3N4 composite

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A sandwich-type sensitive voltammetric immunosensor for breast cancer biomarker human epidermal growth factor receptor 2 (HER2) detection was prepared. The electrochemical immunosensor was developed based on gold nanoparticles decorated copper-organic framework (AuNPs/Cu-MOF) and quaternary chalcogenide with platinum-doped graphitic carbon nitride (g-C3N4). Cu2ZnSnS4 nanoparticle (CZTS NP) quaternary chalcogenide with platinum (Pt)-doped g-C3N4 composite (Pt/g-C3N4) was tagged as CZTS NPs/Pt/g-C3N4. AuNPs/Cu-MOF composite was successfully synthesized by amidation reaction between AuNPs functionalized with amino group and Cu-MOFs containing carboxylic acid. After the conjugations of primer HER2 antibody and antigen HER2 protein to AuNPs/Cu-MOF as sensor platform, CZTS NPs/Pt/g-C3N4 composite was prepared by one-pot hydrothermal method. After immune reaction of 30 min, the prepared HER2 immunosensor was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD) method, x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The developed immunosensor showed high sensitivity with a detection limit of 3.00 fg mL−1. Additional properties of the voltammetric immunosensor are high selectivity, stability, reproducibility, and reusability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dennis J, Slamon PN, Chia S, Fasching PA, De Laurentiis M, Im S-A, Petrakova K, Bianchi GV, Esteva FJ, Mart’ın M, Nusch A, Sonke GS, De la Cruz-Merino L, Beck JT, Pivot X, Vidam G, Wang Y, Lorenc KR, Miller M, Taran T, Jerusalem G (2018) Phase III randomized study of Ribociclib and Fulvestrant in hormone receptor–positive, human epidermal growth factor receptor 2–negative advanced breast Cancer: MONALEESA-3. J Clin Oncol 36(24):2465–2472. https://doi.org/10.1200/JCO.2018.78.9909

    Article  Google Scholar 

  2. Scaltriti M, Rojo F, Ocaña A, Anido J, Guzman M, Cortes J, Di Cosimo S, Matias-Guiu X, Ramon y Cajal S, Arribas J, Baselga J (2007) Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast Cancer. J Natl Cancer Inst 99(8):628–638. https://doi.org/10.1093/jnci/djk134

    Article  CAS  PubMed  Google Scholar 

  3. Ehzari H, Samimi M, Safari M, Gholivand MB (2020) Label-free electrochemical immunosensor for sensitive HER2 biomarker detection using the core-shell magnetic metal-organic frameworks. J Electroanal Chem 877:114722. https://doi.org/10.1016/j.jelechem.2020.114722

    Article  CAS  Google Scholar 

  4. Chun L, Kim S-E, Cho M, W-s C, Nam J, Lee DW, Lee Y (2013) Electrochemical detection of HER2 using single stranded DNA aptamer modified gold nanoparticles electrode. Sens Actuators B Chem 186:446–450. https://doi.org/10.1016/j.snb.2013.06.046

    Article  CAS  Google Scholar 

  5. Capobianco JA, Shih WY, Yuan QA, Adams GP, Shih WH (2008) Label-free, all-electrical, in situ human epidermal growth receptor 2 detection. Rev Sci Instrum 79(7):076101. https://doi.org/10.1063/1.2949831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Agersborg S, Mixon C, Nguyen T, Aithal S, Sudarsanam S, Blocker F, Weiss L, Gasparini R, Jiang S, Chen W, Hess G, Albitar M (2018) Immunohistochemistry and alternative FISH testing in breast cancer with HER2 equivocal amplification. Breast Cancer Res Treat 170(2):321–328. https://doi.org/10.1007/s10549-018-4755-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wolff AC, Hammond MEH, Hicks DG, Dowsett M, McShane LM, Allison KH, Allred DC, Bartlett JMS, Bilous M, Fitzgibbons P, Hanna W, Jenkins RB, Mangu PB, Paik S, Perez EA, Press MF, Spears PA, Vance GH, Viale G, Hayes DF (2013) Recommendations for human epidermal growth factor receptor 2 testing in breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Update. Arch Pathol Lab Med 138(2):241–256. https://doi.org/10.5858/arpa.2013-0953-SA

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang M, Hu M, Hu B, Guo C, Song Y, Jia Q, He L, Zhang Z, Fang S (2019) Bimetallic cerium and ferric oxides nanoparticles embedded within mesoporous carbon matrix: electrochemical immunosensor for sensitive detection of carbohydrate antigen 19-9. Biosens Bioelectron 135:22–29. https://doi.org/10.1016/j.bios.2019.04.018

    Article  CAS  PubMed  Google Scholar 

  9. Yola ML, Atar N (2020) Amperometric galectin-3 immunosensor-based gold nanoparticle-functionalized graphitic carbon nitride nanosheets and core–shell Ti-MOF@COFs composites. Nanoscale 12(38):19824–19832. https://doi.org/10.1039/D0NR05614F

    Article  CAS  PubMed  Google Scholar 

  10. Medetalibeyoglu H, Kotan G, Atar N, Yola ML (2020) A novel and ultrasensitive sandwich-type electrochemical immunosensor based on delaminated MXene@AuNPs as signal amplification for prostate specific antigen (PSA) detection and immunosensor validation. Talanta 220:121403. https://doi.org/10.1016/j.talanta.2020.121403

    Article  CAS  PubMed  Google Scholar 

  11. Karimi-Maleh H, Arotiba OA (2020) Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid. J Colloid Interface Sci 560:208–212. https://doi.org/10.1016/j.jcis.2019.10.007

    Article  CAS  PubMed  Google Scholar 

  12. Karimi-Maleh H, Karimi F, Alizadeh M, Sanati AL (2020) Electrochemical sensors, a bright future in the fabrication of portable kits in analytical systems. Chem Rec 20(7):682–692. https://doi.org/10.1002/tcr.201900092

    Article  CAS  PubMed  Google Scholar 

  13. Miraki M, Karimi-Maleh H, Taher MA, Cheraghi S, Karimi F, Agarwal S, Gupta VK (2019) Voltammetric amplified platform based on ionic liquid/NiO nanocomposite for determination of benserazide and levodopa. J Mol Liq 278:672–676. https://doi.org/10.1016/j.molliq.2019.01.081

    Article  CAS  Google Scholar 

  14. Tahernejad-Javazmi F, Shabani-Nooshabadi M, Karimi-Maleh H (2019) 3D reduced graphene oxide/FeNi3-ionic liquid nanocomposite modified sensor; an electrical synergic effect for development of tert-butylhydroquinone and folic acid sensor. Compos B Eng 172:666–670. https://doi.org/10.1016/j.compositesb.2019.05.065

    Article  CAS  Google Scholar 

  15. Khodadadi A, Faghih-Mirzaei E, Karimi-Maleh H, Abbaspourrad A, Agarwal S, Gupta VK (2019) A new epirubicin biosensor based on amplifying DNA interactions with polypyrrole and nitrogen-doped reduced graphene: experimental and docking theoretical investigations. Sens Actuators B Chem 284:568–574. https://doi.org/10.1016/j.snb.2018.12.164

    Article  CAS  Google Scholar 

  16. Patris S, De Pauw P, Vandeput M, Huet J, Van Antwerpen P, Muyldermans S, Kauffmann J-M (2014) Nanoimmunoassay onto a screen printed electrode for HER2 breast cancer biomarker determination. Talanta 130:164–170. https://doi.org/10.1016/j.talanta.2014.06.069

    Article  CAS  PubMed  Google Scholar 

  17. Al-Khafaji QAM, Harris M, Tombelli S, Laschi S, Turner APF, Mascini M, Marrazza G (2012) An electrochemical immunoassay for HER2 detection. Electroanalysis 24(4):735–742. https://doi.org/10.1002/elan.201100501

    Article  CAS  Google Scholar 

  18. Medetalibeyoglu H, Beytur M, Akyıldırım O, Atar N, Yola ML (2020) Validated electrochemical immunosensor for ultra-sensitive procalcitonin detection: carbon electrode modified with gold nanoparticles functionalized sulfur doped MXene as sensor platform and carboxylated graphitic carbon nitride as signal amplification. Sens Actuators B Chem 319:128195. https://doi.org/10.1016/j.snb.2020.128195

    Article  CAS  Google Scholar 

  19. Hartati YW, Letelay LK, Gaffar S, Wyantuti S, Bahti HH (2020) Cerium oxide-monoclonal antibody bioconjugate for electrochemical immunosensing of HER2 as a breast cancer biomarker. Sens Biosensing Res 27:100316. https://doi.org/10.1016/j.sbsr.2019.100316

    Article  Google Scholar 

  20. Lah ZMANH, Ahmad SAA, Zaini MS, Kamarudin MA (2019) An electrochemical Sandwich Immunosensor for the detection of HER2 using antibody-conjugated PbS quantum dot as a label. J Pharm Biomed 174:608–617. https://doi.org/10.1016/j.jpba.2019.06.024

    Article  CAS  Google Scholar 

  21. Shen C, Zeng K, Luo J, Li X, Yang M, Rasooly A (2017) Self-assembled DNA generated electric current biosensor for HER2 analysis. Anal Chem 89(19):10264–10269. https://doi.org/10.1021/acs.analchem.7b01747

    Article  CAS  PubMed  Google Scholar 

  22. Ranganathan V, Srinivasan S, Singh A, DeRosa MC (2020) An aptamer-based colorimetric lateral flow assay for the detection of human epidermal growth factor receptor 2 (HER2). Anal Biochem 588:113471. https://doi.org/10.1016/j.ab.2019.113471

    Article  CAS  PubMed  Google Scholar 

  23. Liao X, Fu H, Yan T, Lei J (2019) Electroactive metal–organic framework composites: design and biosensing application. Biosens Bioelectron 146:111743. https://doi.org/10.1016/j.bios.2019.111743

    Article  CAS  PubMed  Google Scholar 

  24. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341(6149):1230444. https://doi.org/10.1126/science.1230444

    Article  CAS  PubMed  Google Scholar 

  25. Zhou H, Zheng M, Tang H, Xu B, Tang Y, Pang H (2020) Amorphous intermediate Derivative from ZIF-67 and its outstanding Electrocatalytic activity. Small 16(2):1904252. https://doi.org/10.1002/smll.201904252

    Article  CAS  Google Scholar 

  26. Abuzalat O, Wong D, Park SS, Kim S (2020) Highly selective and sensitive fluorescent zeolitic imidazole frameworks sensor for nitroaromatic explosive detection. Nanoscale 12(25):13523–13530. https://doi.org/10.1039/D0NR01653E

    Article  CAS  PubMed  Google Scholar 

  27. Chen J, Xu Q, Shu Y, Hu X (2018) Synthesis of a novel au nanoparticles decorated Ni-MOF/Ni/NiO nanocomposite and electrocatalytic performance for the detection of glucose in human serum. Talanta 184:136–142. https://doi.org/10.1016/j.talanta.2018.02.057

    Article  CAS  PubMed  Google Scholar 

  28. Chen Y-Z, Zhang R, Jiao L, Jiang H-L (2018) Metal–organic framework-derived porous materials for catalysis. Coord Chem Rev 362:1–23. https://doi.org/10.1016/j.ccr.2018.02.008

    Article  CAS  Google Scholar 

  29. W-c P, Chen Y, X-y L (2016) MoS2/reduced graphene oxide hybrid with CdS nanoparticles as a visible light-driven photocatalyst for the reduction of 4-nitrophenol. J Hazard Mater 309:173–179. https://doi.org/10.1016/j.jhazmat.2016.02.021

    Article  CAS  Google Scholar 

  30. J-w S, Y-w J, S-w P, Nah H, Moon T, Park B, Kim J-G, Kim YJ, Cheon J (2007) Two-dimensional Nanosheet crystals. Angew Chem Int Ed 46(46):8828–8831. https://doi.org/10.1002/anie.200703175

    Article  CAS  Google Scholar 

  31. Badkoobehhezaveh AM, Abdizadeh H, Golobostanfard MR (2018) Electrophoretic behavior of solvothermal synthesized anion replaced Cu2ZnSn(SxSe1-x)4 films for photoelectrochemical water splitting. Int J Hydrog Energy 43(27):11990–12001. https://doi.org/10.1016/j.ijhydene.2018.04.140

    Article  CAS  Google Scholar 

  32. Devaraji P, Gopinath CS (2018) Pt – g-C3N4 – (au/TiO2): electronically integrated nanocomposite for solar hydrogen generation. Int J Hydrog Energy 43(2):601–613. https://doi.org/10.1016/j.ijhydene.2017.11.057

    Article  CAS  Google Scholar 

  33. Ong W-J, Tan L-L, Ng YH, Yong S-T, Chai S-P (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116(12):7159–7329. https://doi.org/10.1021/acs.chemrev.6b00075

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Y, Chai C, Zhang X, Liu J, Duan D, Fan C, Wang Y (2019) Construction of Pt-decorated g-C3N4/Bi2WO6 Z-scheme composite with superior solar photocatalytic activity toward rhodamine B degradation. Inorg Chem Commun 100:81–91. https://doi.org/10.1016/j.inoche.2018.12.019

    Article  CAS  Google Scholar 

  35. Li C, Wu R, Zou J, Zhang T, Zhang S, Zhang Z, Hu X, Yan Y, Ling X (2018) MNPs@anionic MOFs/ERGO with the size selectivity for the electrochemical determination of H(2)O(2) released from living cells. Biosens Bioelectron 116:81–88. https://doi.org/10.1016/j.bios.2018.05.045

    Article  CAS  PubMed  Google Scholar 

  36. Liu CS, Sun CX, Tian JY, Wang ZW, Ji HF, Song YP, Zhang S, Zhang ZH, He LH, Du M (2017) Highly stable aluminum-based metal-organic frameworks as biosensing platforms for assessment of food safety. Biosens Bioelectron 91:804–810. https://doi.org/10.1016/j.bios.2017.01.059

    Article  CAS  PubMed  Google Scholar 

  37. Xu Q-Q, Liu B, Xu L, Jiao H (2017) Ionothermal synthesis and structural transformation targeted by ion exchange in metal-1,3,5-benzenetricarboxylate compounds. J Solid State Chem 247:1–7. https://doi.org/10.1016/j.jssc.2016.12.006

    Article  CAS  Google Scholar 

  38. Yola ML, Atar N (2014) A novel voltammetric sensor based on gold nanoparticles involved in p-aminothiophenol functionalized multi-walled carbon nanotubes: application to the simultaneous determination of quercetin and rutin. Electrochim Acta 119:24–31. https://doi.org/10.1016/j.electacta.2013.12.028

    Article  CAS  Google Scholar 

  39. La Belle JT, Demirok UK, Patel DR, Cook CB (2011) Development of a novel single sensor multiplexed marker assay. Analyst 136(7):1496–1501. https://doi.org/10.1039/c0an00923g

    Article  CAS  PubMed  Google Scholar 

  40. Yola ML, Eren T, Atar N (2016) A molecular imprinted voltammetric sensor based on carbon nitride nanotubes: application to determination of melamine. J Electrochem Soc 163(13):B588–B593. https://doi.org/10.1149/2.0311613jes

    Article  CAS  Google Scholar 

  41. Yu X, Shavel A, An X, Luo Z, Ibáñez M, Cabot A (2014) Cu2ZnSnS4-Pt and Cu2ZnSnS4-au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation. J Am Chem Soc 136(26):9236–9239. https://doi.org/10.1021/ja502076b

    Article  CAS  PubMed  Google Scholar 

  42. Yola ML, Atar N (2019) Development of cardiac troponin-I biosensor based on boron nitride quantum dots including molecularly imprinted polymer. Biosens Bioelectron 126:418–424. https://doi.org/10.1016/j.bios.2018.11.016

    Article  CAS  PubMed  Google Scholar 

  43. Glišić BĐ, Rychlewska U, Djuran MI (2012) Reactions and structural characterization of 33(iii) complexes with amino acids, peptides and proteins. Dalton Trans 41(23):6887–6901. https://doi.org/10.1039/C2DT30169E

    Article  PubMed  Google Scholar 

  44. Stanković V, Đurđić S, Ognjanović M, Mutić J, Kalcher K, Stanković DM (2020) A novel nonenzymatic hydrogen peroxide amperometric sensor based on AgNp@GNR nanocomposites modified screen-printed carbon electrode. J Electroanal Chem 876:114487. https://doi.org/10.1016/j.jelechem.2020.114487

    Article  CAS  Google Scholar 

  45. Sheberla D, Sun L, Blood-Forsythe MA, Er S, Wade CR, Brozek CK, Aspuru-Guzik A, Dincă M (2014) High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal–organic Graphene analogue. J Am Chem Soc 136(25):8859–8862. https://doi.org/10.1021/ja502765n

    Article  CAS  PubMed  Google Scholar 

  46. Zhan W, Shu Y, Sheng Y, Zhu H, Guo Y, Wang L, Guo Y, Zhang J, Lu G, Dai S (2017) Surfactant-assisted stabilization of au colloids on solids for heterogeneous catalysis. Angew Chem Int Ed 56(16):4494–4498. https://doi.org/10.1002/anie.201701191

    Article  CAS  Google Scholar 

  47. Maji SK, Sreejith S, Mandal AK, Ma X, Zhao Y (2014) Immobilizing gold nanoparticles in Mesoporous silica covered reduced graphene oxide: a hybrid material for cancer cell detection through hydrogen peroxide sensing. ACS Appl Mater Interfaces 6(16):13648–13656. https://doi.org/10.1021/am503110s

    Article  CAS  PubMed  Google Scholar 

  48. Abbasi AR, Karimi M, Daasbjerg K (2017) Efficient removal of crystal violet and methylene blue from wastewater by ultrasound nanoparticles cu-MOF in comparison with mechanosynthesis method. Ultrason Sonochem 37:182–191. https://doi.org/10.1016/j.ultsonch.2017.01.007

    Article  CAS  PubMed  Google Scholar 

  49. Feng Y, Jiang H, Li S, Wang J, Jing X, Wang Y, Chen M (2013) Metal–organic frameworks HKUST-1 for liquid-phase adsorption of uranium. Colloids Surf A Physicochem Eng Asp 431:87–92. https://doi.org/10.1016/j.colsurfa.2013.04.032

    Article  CAS  Google Scholar 

  50. Yu J, Wang K, Xiao W, Cheng B (2014) Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4–Pt nanocomposite photocatalysts. Phys Chem Chem Phys 16(23):11492–11501. https://doi.org/10.1039/C4CP00133H

    Article  CAS  PubMed  Google Scholar 

  51. Raza A, Shen H, Haidry AA, Cui S (2019) Hydrothermal synthesis of Fe3O4/TiO2/g-C3N4: advanced photocatalytic application. Appl Surf Sci 488:887–895. https://doi.org/10.1016/j.apsusc.2019.05.210

    Article  CAS  Google Scholar 

  52. Hao R, Wang G, Jiang C, Tang H, Xu Q (2017) In situ hydrothermal synthesis of g-C3N4/TiO2 heterojunction photocatalysts with high specific surface area for Rhodamine B degradation. Appl Surf Sci 411:400–410. https://doi.org/10.1016/j.apsusc.2017.03.197

    Article  CAS  Google Scholar 

  53. Mousavi M, Habibi-Yangjeh A, Abitorabi M (2016) Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation. J Colloid Interface Sci 480:218–231. https://doi.org/10.1016/j.jcis.2016.07.021

    Article  CAS  PubMed  Google Scholar 

  54. Xu A, Tao H, Chen S, Zhu L, Zhao Y, Jiang J, Pan L, Tao J (2015) A novel approach to utilize thiol reduced graphene oxide as linker molecule for Cu2ZnSnS4 sensitized solar cell. Int J Hydrog Energy 40(46):15933–15939. https://doi.org/10.1016/j.ijhydene.2015.09.068

    Article  CAS  Google Scholar 

  55. Suryawanshi M, Shin SW, Ghorpade U, Song D, Hong CW, Han S-S, Heo J, Kang SH, Kim JH (2017) A facile and green synthesis of colloidal Cu2ZnSnS4 nanocrystals and their application in highly efficient solar water splitting. J Mater Chem A 5(9):4695–4709. https://doi.org/10.1039/C7TA00257B

    Article  CAS  Google Scholar 

  56. Raza A, Shen H, Haidry AA (2020) Novel Cu2ZnSnS4/Pt/g-C3N4 heterojunction photocatalyst with straddling band configuration for enhanced solar to fuel conversion. Appl Catal B 277:119239. https://doi.org/10.1016/j.apcatb.2020.119239

    Article  CAS  Google Scholar 

  57. Ou M, Wan S, Zhong Q, Zhang S, Wang Y (2017) Single Pt atoms deposition on g-C3N4 nanosheets for photocatalytic H2 evolution or NO oxidation under visible light. Int J Hydrog Energy 42(44):27043–27054. https://doi.org/10.1016/j.ijhydene.2017.09.047

    Article  CAS  Google Scholar 

  58. Nie L, Yu J, Li X, Cheng B, Liu G, Jaroniec M (2013) Enhanced performance of NaOH-modified Pt/TiO2 toward room temperature selective oxidation of formaldehyde. Environ Sci Technol 47(6):2777–2783. https://doi.org/10.1021/es3045949

    Article  CAS  PubMed  Google Scholar 

  59. Luo Y, Yan Y, Zheng S, Xue H, Pang H (2019) Graphitic carbon nitride based materials for electrochemical energy storage. J Mater Chem A 7(3):901–924. https://doi.org/10.1039/C8TA08464E

    Article  CAS  Google Scholar 

  60. Akbarzadeh F, Motaghi M, Chauhan NPS, Sargazi G (2020) A novel synthesis of new antibacterial nanostructures based on Zn-MOF compound: design, characterization and a high performance application. Heliyon 6(1):e03231. https://doi.org/10.1016/j.heliyon.2020.e03231

    Article  PubMed  PubMed Central  Google Scholar 

  61. Khandan FM, Afzali D, Sargazi G, Gordan M (2018) Novel uranyl-curcumin-MOF photocatalysts with highly performance photocatalytic activity toward the degradation of phenol red from aqueous solution: effective synthesis route, design and a controllable systematic study. J Mater Sci Mater Electron 29(21):18600–18613. https://doi.org/10.1007/s10854-018-9978-z

    Article  CAS  Google Scholar 

  62. Li J-R, Sculley J, Zhou H-C (2012) Metal–organic frameworks for separations. Chem Rev 112(2):869–932. https://doi.org/10.1021/cr200190s

    Article  CAS  PubMed  Google Scholar 

  63. DeCoste JB, Peterson GW (2014) Metal–organic frameworks for air purification of toxic chemicals. Chem Rev 114(11):5695–5727. https://doi.org/10.1021/cr4006473

    Article  CAS  PubMed  Google Scholar 

  64. Mattioli IA, Baccarin M, Cervini P, Cavalheiro ÉTG (2019) Electrochemical investigation of a graphite-polyurethane composite electrode modified with electrodeposited gold nanoparticles in the voltammetric determination of tryptophan. J Electroanal Chem 835:212–219. https://doi.org/10.1016/j.jelechem.2018.12.056

    Article  CAS  Google Scholar 

  65. Yola ML, Atar N (2019) Development of cardiac troponin-I biosensor based on boron nitride quantum dots including molecularly imprinted polymer. Biosens Bioelectron 126:418–424. https://doi.org/10.1016/j.bios.2018.11.016

    Article  CAS  PubMed  Google Scholar 

  66. Freitas M, Neves MMPS, Nouws HPA, Delerue-Matos C (2020) Quantum dots as nanolabels for breast cancer biomarker HER2-ECD analysis in human serum. Talanta 208:120430. https://doi.org/10.1016/j.talanta.2019.120430

    Article  CAS  PubMed  Google Scholar 

  67. Freitas M, Nouws HPA, Delerue-Matos C (2019) Electrochemical sensing platforms for HER2-ECD breast Cancer biomarker detection. Electroanalysis 31(1):121–128. https://doi.org/10.1002/elan.201800537

    Article  CAS  Google Scholar 

  68. Lah Z, Ahmad SAA, Zaini MS, Kamarudin MA (2019) An electrochemical sandwich immunosensor for the detection of HER2 using antibody-conjugated PbS quantum dot as a label. J Pharm Biomed Anal 174:608–617. https://doi.org/10.1016/j.jpba.2019.06.024

    Article  CAS  PubMed  Google Scholar 

  69. Pacheco JG, Rebelo P, Freitas M, Nouws HPA, Delerue-Matos C (2018) Breast cancer biomarker (HER2-ECD) detection using a molecularly imprinted electrochemical sensor. Sens Actuators B Chem 273:1008–1014. https://doi.org/10.1016/j.snb.2018.06.113

    Article  CAS  Google Scholar 

  70. Sharma S, Zapatero-Rodríguez J, Saxena R, O’Kennedy R, Srivastava S (2018) Ultrasensitive direct impedimetric immunosensor for detection of serum HER2. Biosens Bioelectron 106:78–85. https://doi.org/10.1016/j.bios.2018.01.056

    Article  CAS  PubMed  Google Scholar 

  71. Freitas M, Nouws HPA, Keating E, Fernandes VC, Delerue-Matos C (2020) Immunomagnetic bead-based bioassay for the voltammetric analysis of the breast cancer biomarker HER2-ECD and tumour cells using quantum dots as detection labels. Microchim Acta 187(3):184. https://doi.org/10.1007/s00604-020-4156-4

    Article  CAS  Google Scholar 

  72. Ou D, Sun D, Lin X, Liang Z, Zhong Y, Chen Z (2019) A dual-aptamer-based biosensor for specific detection of breast cancer biomarker HER2 via flower-like nanozymes and DNA nanostructures. J Mater Chem B 7(23):3661–3669. https://doi.org/10.1039/C9TB00472F

    Article  CAS  Google Scholar 

  73. Gu C, Guo C, Li Z, Wang M, Zhou N, He L, Zhang Z, Du M (2019) Bimetallic ZrHf-based metal-organic framework embedded with carbon dots: ultra-sensitive platform for early diagnosis of HER2 and HER2-overexpressed living cancer cells. Biosens Bioelectron 134:8–15. https://doi.org/10.1016/j.bios.2019.03.043

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Mehmet Lütfi YOLA would like to thank Turkish Academy of Sciences (TUBA- GEBIP) for their invaluable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Lütfi Yola.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 1.97 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yola, M.L. Sensitive sandwich-type voltammetric immunosensor for breast cancer biomarker HER2 detection based on gold nanoparticles decorated Cu-MOF and Cu2ZnSnS4 NPs/Pt/g-C3N4 composite. Microchim Acta 188, 78 (2021). https://doi.org/10.1007/s00604-021-04735-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04735-y

Keywords

Navigation