Skip to main content
Log in

Black phosphorus quantum dots are useful oxidase mimics for colorimetric determination of biothiols

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Black phosphorus quantum dots (BP QDs) with small size are synthesized using an easy to operate thermal method. It was found that BP QDs possess oxidase-mimicking activity. They can catalyze the oxidation of the substrate 3,3′,5,5′-tetramethylbenzidine to produce a blue-colored product even in the absence of hydrogen peroxide. Active oxygen species are proved to be involved in the reaction through the experiments of radical scavenging and electron spin resonance. Biothiols including reduced glutathione and cysteine inactivate the oxidase-mimicking activity of BP QDs, concomitant to the fading of the blue solution. This provides the  base for a colorimetric method for the determination of glutathione and cysteine. The decreased absorbance at 652 nm displays linear response to the concentrations of glutathione ranging from 0.1 to 5.0 μmol L−1, and cysteine from 0.1 to 10.0 μmol L−1. The detection limits are 0.02 μmol L−1 and 0.03 μmol L−1 for glutathione and cysteine, respectively. Successive determinations of 1.0 μmol L−1 glutathione and 5.0 μmol L−1 cysteine solution give relative standard deviations of 0.8% and 1.7% (n = 11), respectively. As a preliminary application, the practicability of the method was evaluated by the determination of glutathione in pharmaceutical preparations. This work not only discovers a useful oxidase mimics but also sets up a reliable platform based on BP QDs in colorimetric detection.

Schematic representation of colorimetric determination for biothiols through inactivating oxidase mimetic−like catalytic activity of black phosphorus quantum dots (BP QDs) on the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) with dissolved oxygen to produce its blue oxidized product (oxTMB).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Davids T, Schmidt M, Boettcher D, Bornscheuer UT (2013) Strategies for the discovery and engineering of enzymes for biocatalysis. Curr Opin Chem Biol 17:215–220. https://doi.org/10.1016/j.cbpa.2013.02.022

    Article  CAS  PubMed  Google Scholar 

  2. Kuah E, Toh S, Yee J, Ma Q, Gao ZQ (2016) Enzyme mimics: advances and applications. Chem Eur J 22:8404–8430. https://doi.org/10.1002/chem.201504394

    Article  CAS  PubMed  Google Scholar 

  3. Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang TH, Feng J, Yang DL, Perrett S, Yan XY (2007) Intrinsic peroxidase–like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583. https://doi.org/10.1038/nnano.2007.260

    Article  CAS  PubMed  Google Scholar 

  4. Huang YY, Ren JS, Qu XG (2019) Nanozymes: classification, catalytic mechanisms, activity regulation and applications. Chem Rev 119:4357–4412. https://doi.org/10.1021/acs.chemrev.8b00672

    Article  CAS  PubMed  Google Scholar 

  5. Cui WW, Wang YY, Yang DD, Du JX (2017) Fluorometric determination of ascorbic acid by exploiting its deactivating effect on the oxidase–mimetic properties of cobalt oxyhydroxide nanosheets. Microchim Acta 184:4749–4755. https://doi.org/10.1007/s00604-017-2525-4

    Article  CAS  Google Scholar 

  6. Hayat A, Haider W, Raza Y, Marty JL (2015) Colorimetric cholesterol sensor based on peroxidase like activity of zinc oxide nanoparticles incorporated carbon nanotubes. Talanta 143:157–161. https://doi.org/10.1016/j.talanta.2015.05.051

    Article  CAS  PubMed  Google Scholar 

  7. Cheng HJ, Liu YF, Hu YH, Ding YB, Lin SC, Cao W, Wang Q, Wu JJX, Muhammad F, Zhao XZ, Zhao D, Li Z, Xing H, Wei H (2017) Monitoring of heparin activity in live rates using metal–organic framework nanosheets as peroxidase mimics. Anal Chem 89:11552–11559. https://doi.org/10.1021/acs.analchem.7b02895

    Article  CAS  PubMed  Google Scholar 

  8. Li JX, Gao ZQ, Ye HH, Wan SL, Pierce M, Tang DP, Xia XH (2017) A non–enzyme cascade amplification strategy for colorimetric assay of disease biomarkers. Chem Commun 53:9055–9058. https://doi.org/10.1039/c7cc04521b

    Article  CAS  Google Scholar 

  9. Qu KG, Shi P, Ren JS, Qu XG (2014) Nanocomposite incorporating V2O5 nanowires and gold nanoparticles for mimicking an enzyme cascade reaction and its application in the determination of biomolecules. Chem Eur J 20:7501–7506. https://doi.org/10.1002/chem.201400309

    Article  CAS  PubMed  Google Scholar 

  10. Song HW, Li ZB, Peng YX, Li X, Xu XC, Pan JM, Niu XH (2019) Enzyme–triggered in situ formation of Ag nanoparticles with oxidase–mimicking activity for amplified determination of alkaline phosphatase activity. Analyst 144:2416–2422. https://doi.org/10.1039/c9an00105k

    Article  CAS  PubMed  Google Scholar 

  11. Chen S, Quan Y, Yu YL, Wang JH (2017) Graphene quantum dot/silver nanoparticle hybrids with oxidase activities for antibacterial application. ACS Biomater Sci Eng 3:313–321. https://doi.org/10.1021/acsbiomaterials.6b00644

    Article  CAS  Google Scholar 

  12. Gui RJ, Jin H, Wang ZH, Li JH (2018) Black phosphorus quantum dots: synthesis, properties, functionalized modification and applications. Chem Soc Rev 47:6795–6823. https://doi.org/10.1039/c8cs00387d

    Article  CAS  PubMed  Google Scholar 

  13. Seo SJ, Kim YJ, Lee HU, Kim HR, Lee SY, Kim YS, Won JH, Kim YJ, Lee J (2018) Black phosphorus quantum dot–based field–effect transistors with ambipolar characteristics. Appl Surf Sci 448:576–582. https://doi.org/10.1016/j.apsusc.2018.04.158

    Article  CAS  Google Scholar 

  14. Xu ZL, Lin SH, Onofrio N, Zhou LM, Shi FY, Lu W, Kang K, Zhang Q, Lau SP (2017) Exceptional catalytic effects of black phosphorus quantum dots in shuttling–free lithium sulfur batteries. Nat Commun 9:4164. https://doi.org/10.1038/s41467-018-06629-9

    Article  CAS  Google Scholar 

  15. Guo T, Wu Y, Lin Y, Xu X, Lian H, Huang GM, Liu JZ, Wu XP, Yang HH (2018) Black phosphorus quantum dots with renal clearance property for efficient photodynamic therapy. Small 14:1702815. https://doi.org/10.1002/smll.201702815

    Article  CAS  Google Scholar 

  16. Yin F, Hu K, Chen S, Wang DY, Zhang JN, Xie MS, Yang D, Qiu M, Zhang H, Li ZG (2017) Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA–1 cells. J Mater Chem B 5:5433–5440. https://doi.org/10.1039/c7tb01068k

    Article  CAS  PubMed  Google Scholar 

  17. Zhu CY, Xu F, Zhang L, Li ML, Chen J, Xu SH, Huang GG, Chen WH, Sun LT (2016) Ultrafast preparation of black phosphorus quantum dots for efficient humidity sensing. Chem Eur J 22:7357–7362. https://doi.org/10.1002/chem.201600719

    Article  CAS  PubMed  Google Scholar 

  18. Gu W, Pei XY, Cheng YX, Zhang CL, Zhang JD, Yan YH, Ding CP, Xian YZ (2017) Black phosphorus quantum dots as the ratiometric fluorescence probe for trace mercury ion determination based on inner filter effect. ACS Sens 2:576–582. https://doi.org/10.1021/acssensors.7b00102

    Article  CAS  PubMed  Google Scholar 

  19. Li Y, Liu ZM, Hou YQ, Yang GC, Fei XX, Zhao HN, Guo YX, Su CK, Wang Z, Zhong HQ, Zhuang ZF, Guo ZY (2017) Multifunctional nanoplatform based on black phosphorus quantum dots for bioimaging and photodynamic/photothermal synergistic cancer therapy. ACS Appl Mater Interfaces 9:25098–25106. https://doi.org/10.1021/acsami.7b05824

    Article  CAS  PubMed  Google Scholar 

  20. Liu HJ, Sun MX, Su YY, Deng DY, Hu JY, Lv Y (2018) Chemiluminescence of black phosphorus quantum dots induced by hypochlorite and peroxide. Chem Commun 54:7987–7990. https://doi.org/10.1039/c8cc04513e

    Article  CAS  Google Scholar 

  21. Poole LB (2015) The basics of thiols and cysteines in redox biology and chemistry. Free Radical Bio Med 80:148–157. https://doi.org/10.1016/j.freeradbiomed.2014.11.013

    Article  CAS  Google Scholar 

  22. Turell L, Radi R, Alvarez B (2013) The thiol pool in human plasma: the central contribution of albumin to redox processes. Free Radical Bio Med 65:244–253. https://doi.org/10.1016/j.freeradbiomed.2013.05.050

    Article  CAS  Google Scholar 

  23. Ghasemi F, Hormozi-Nezhad MR, Mahmoudi M (2015) A colorimetric sensor array for determination and discrimination of biothiols based on aggregation of gold nanoparticles. Anal Chim Acta 882:58–67. https://doi.org/10.1016/j.aca.2015.04.011

    Article  CAS  PubMed  Google Scholar 

  24. Kappi FA, Tsogas GZ, Routsi AM, Christodouleas DC, Giokas DL (2018) Paper–based devices for biothiols sensing using the photochemical reduction of silver halides. Anal Chim Acta 1036:89–96. https://doi.org/10.1016/j.aca.2018.05.062

    Article  CAS  PubMed  Google Scholar 

  25. Zheng W, Shen DJ, Pan YD, Yi DY, Long YJ, Zheng HZ (2019) Enhancing the peroxidase–like activity of ficin by rational blocking thiol groups for colorimetric determination of biothiols. Talanta 204:833–839. https://doi.org/10.1016/j.talanta.2019.06.073

    Article  CAS  PubMed  Google Scholar 

  26. Guo Y, Yang LL, Li WW, Wang XF, Shang YH, Li BX (2016) Carbon dots doped with nitrogen and sulfur and loaded with copper (II) as a “turn–on” fluorescent probe for cysteine, glutathione and homocysteine. Microchim Acta 183:1409–1416. https://doi.org/10.1007/s00604-016-1779-6

    Article  CAS  Google Scholar 

  27. Elgawish MS, Kishikawa N, Kuroda N (2015) Quinones as novel chemiluminescent probes for the sensitive and selective determination of biothiols in biological fluids. Analyst 140:8148–8156. https://doi.org/10.1039/c5an01604e

    Article  PubMed  Google Scholar 

  28. Feng LY, Wu L, Xing FF, Hu LZ, Ren JS, Qu XG (2017) Novel electrochemiluminescence of silver nanoclusters fabricated on triplex DNA scaffolds for label–free determination of biothiols. Biosens Bioelectron 98:378–385. https://doi.org/10.1016/j.bios.2017.07.016

    Article  CAS  PubMed  Google Scholar 

  29. Wu GZ, Zhou JQ, Jiang XY, Guo XY, Gao F (2013) Electrochemical determination of low–molecular–mass biothiols in biological fluids at carbon spheres–modified glassy carbon electrodes. Electroanalysis 4:17–23. https://doi.org/10.1007/s12678-012-0107-0

    Article  CAS  Google Scholar 

  30. Isokawa M, Funatsu T, Tsunoda M (2013) Fast and simultaneous analysis of biothiols by high–performance liquid chromatography with fluorescence determination under hydrophilic interaction chromatography conditions. Analyst 138:3802–3808. https://doi.org/10.1039/c3an00527e

    Article  CAS  PubMed  Google Scholar 

  31. Xu YH, Wang ZT, Guo ZN, Huang H, Xiao QL, Zhang H, Yu XF (2016) Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots. Adv Opt Mater 4:1223–1229. https://doi.org/10.1002/adom.201600214

    Article  CAS  Google Scholar 

  32. Asati A, Santra S, Kaittanis C, Nath S, Perez JM (2009) Oxidase–like activity of polymer–coated cerium oxide nanoparticles. Angew Chem Int Ed 48:2308–2312. https://doi.org/10.1002/anie.200805279

    Article  CAS  Google Scholar 

  33. Zhou Y, Du JX, Wang Z (2019) Fluorescein and its derivatives: new coreactants for luminol chemiluminescence reaction and its application for sensitive determination of cobalt ion. Talanta 191:422–427. https://doi.org/10.1016/j.talanta.2018.09.007

    Article  CAS  PubMed  Google Scholar 

  34. National Pharmacopoeia Commission (2015) Chinese pharmacopoeia (part II). China Medical Science and Technology Press, Beijing, p 512

    Google Scholar 

  35. Sun JJ, Wang Q, Yang JJ, Zhang JJ, Li Z, Li H, Yang XF (2019) 2,4−Dinitrobenzenesulfonate−functionalized carbon dots as a turn−on fluorescent probe for imaging of biothiols in living cells. Microchim Acta 186:402. https://doi.org/10.1007/s00604-019-3503-9

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Grant No. 21675107) and Fundamental Research Funds for the Central Universities (Grant No. GK201801006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxiu Du.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 454 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, L., Li, H. & Du, J. Black phosphorus quantum dots are useful oxidase mimics for colorimetric determination of biothiols. Microchim Acta 187, 229 (2020). https://doi.org/10.1007/s00604-020-4222-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-4222-y

Keywords

Navigation