Skip to main content
Log in

Gold nanoparticle/DNA-based nanobioconjugate for electrochemical detection of Zika virus

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The development of a stable nanobioconjugate based on gold nanoparticles (AuNPs) linked to single-strand DNA (ssDNA) is reported for amplification of the electrochemical signal of a Zika virus (ZIKV) genetic material-based bioassay, with high sensitivity. The genosensor was assembled either at a screen-printed gold electrode (SPAuE) or a screen-printed carbon electrode decorated with hierarchical gold nanostructures (SPCE/Au), with Ru3+ as an electrochemical reporter. The genosensor response, interrogated by differential pulse voltammetry (DPV) at the transient current density, was linear from 10 to 600 fM and from 500 fM to 10 pM of the target, with a sensitivity of 2.7 and 2.9 μA cm−2 M−1 and a limit of detection of 0.2 and 33 fM at the SPAuE and SPCE/Au, respectively. The resultant genosensor detected ZIKV genetic material in raw serum samples from infected patients, with no sample pretreatment in a polymerase chain reaction amplification-free assay. The proposed ultrasensitive nanobioconjugate-based system offers a step forward to the diagnosis of the ZIKV, closer to the patient, and holds the potential for signal amplification in biosensing of a myriad of applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cao-Lormeau VM, Blake A, Mons S, Lastère S, Roche C, Vanhomwegen J, Dub T, Baudouin L, Teissier A, Larre P, Vial AL, Decam C, Choumet V, Halstead SK, Willison HJ, Musset L, Manuguerra JC, Despres P, Fournier E, Mallet HP, Musso D, Fontanet A, Neil J, Ghawché F (2016) Guillain-Barré syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet 387:1531–1539

    PubMed  PubMed Central  Google Scholar 

  2. Vásquez G, Rey A, Rivera C, Iregui C, Orozco J (2017) Amperometric biosensor based on a single antibody of dual function for rapid detection of Streptococcus agalactiae. Biosens Bioelectron 87:453–458

    PubMed  Google Scholar 

  3. Yang ZH, Ren S, Zhuo Y, Yuan R, Chai YQ (2017) Cu/Mn double-doped CeO2 nanocomposites as signal tags and signal amplifiers for sensitive electrochemical detection of procalcitonin. Anal Chem 89:13349–13356

    CAS  PubMed  Google Scholar 

  4. Dennis AM, Delehanty JB, Medintz IL (2016) Emerging physicochemical phenomena along with new opportunities at the biomolecular-nanoparticle interface. J Phys Chem Lett 7:2139–2150

    CAS  PubMed  Google Scholar 

  5. Zhu N, Huang W, Hu X, Liu Y, Fang Z, Guo K (2018) Chemoselective polymerization platform for flow synthesis of functional polymers and nanoparticles. Chem Eng J 333:43–48

    CAS  Google Scholar 

  6. Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL (2013) Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 113:1904–2074

    CAS  Google Scholar 

  7. Zhang J, Song S, Zhang L, Wang L, Wu H, Pan D, Fan C (2006) Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. J Am Chem Soc 128:8575–8580

    CAS  PubMed  Google Scholar 

  8. Cheng Y, Zhang M, Yao G, Yang L, Tao J, Gong Z, He G, Sun Z (2016) Band gap manipulation of cerium doping TiO2 nanopowders by hydrothermal method. J Alloys Compd 662:179–184

    CAS  Google Scholar 

  9. Bo B, Zhang T, Jiang Y, Cui H, Miao P (2018) Triple signal amplification strategy for ultrasensitive determination of MiRNA based on duplex specific nuclease and bridge DNA-gold nanoparticles. Anal Chem 90:2395–2400

    CAS  PubMed  Google Scholar 

  10. Pardee K, Green AA, Takahashi MK, Braff D, Lambert G, Lee JW, Ferrante T, Ma D, Donghia N, Fan M, Daringer NM, Bosch I, Dudley DM, O’Connor DH, Gehrke L, Collins JJ (2016) Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell 165:1255–1266

    CAS  PubMed  Google Scholar 

  11. Faria HAM, Zucolotto V (2019) Label-free electrochemical DNA biosensor for zika virus identification. Biosens Bioelectron 131:149–155

    CAS  PubMed  Google Scholar 

  12. Tancharoen C, Sukjee W, Thepparit C, Jaimipuk T, Auewarakul P, Thitithanyanont A, Sangma C (2019) Electrochemical biosensor based on surface imprinting for Zika virus detection in serum. ACS Sensors 4:69–75. https://doi.org/10.1021/acssensors.8b00885

    Article  CAS  PubMed  Google Scholar 

  13. Steinmetz M, Lima D, Viana AG, Fujiwara ST, Pessôa CA, Etto RM, Wohnrath K (2019) A sensitive label-free impedimetric DNA biosensor based on silsesquioxane-functionalized gold nanoparticles for Zika virus detection. Biosens Bioelectron 141:111351

    CAS  PubMed  Google Scholar 

  14. Shafiee H, Kanakasabapathy MK, Juillard F, Keser M, Sadasivam M, Yuksekkaya M, Hanhauser E, Henrich TJ, Kuritzkes DR, Kaye KM, Demirci U (2015) Printed flexible plastic microchip for viral load measurement through quantitative detection of viruses in plasma and saliva. Sci Rep 5:1–9. https://doi.org/10.1038/srep09919

    Article  CAS  Google Scholar 

  15. Moço ACR, Guedes PH, Flauzino JMR et al (2019) Electrochemical detection of Zika virus in biological samples: a step for diagnosis point-of-care. Electroanalysis 31:1597–1604

    Google Scholar 

  16. Takemura K, Adegoke O, Suzuki T, Park EY (2019) A localized surface plasmon resonance-amplified immunofluorescence biosensor for ultrasensitive and rapid detection of nonstructural protein 1 of Zika virus. PLoS One 14:1–14

    Google Scholar 

  17. Kaushik A, Yndart A, Kumar S et al (2018) A sensitive electrochemical immunosensor for label-free detection of Zika-virus protein. Sci Rep 8:3–7

    Google Scholar 

  18. Lee KH, Zeng H (2017) Aptamer-based ELISA assay for highly specific and sensitive detection of Zika NS1 protein. Anal Chem 89:12743–12748

    CAS  PubMed  Google Scholar 

  19. Cabral-Miranda G, Cardoso AR, Ferreira LCS, Sales MGF, Bachmann MF (2018) Biosensor-based selective detection of Zika virus specific antibodies in infected individuals. Biosens Bioelectron 113:101–107

    CAS  PubMed  Google Scholar 

  20. Faria AM, Mazon T (2019) Early diagnosis of Zika infection using a ZnO nanostructures-based rapid electrochemical biosensor. Talanta 203:153–160

    CAS  PubMed  Google Scholar 

  21. Alzate D, Cajigas S, Robledo S, Muskus C, Orozco J (2020) Genosensor for differential detection of Zika virus. Talanta 210:120648

    CAS  PubMed  Google Scholar 

  22. Jiang Q, Chandar YJ, Cao S et al (2017) Rapid, point-of-care, paper-based plasmonic biosensor for Zika virus diagnosis. Adv Biosyst 1:1–8

    CAS  Google Scholar 

  23. Yang M, Yau HCM, Chan HL (1998) Adsorption kinetics and ligand-binding properties of thiol-modified double-stranded DNA on a gold surface. Langmuir 14:6121–6129

    CAS  Google Scholar 

  24. Wang C, Zhou J, Wang P, He W, Duan H (2016) Robust nanoparticle-DNA conjugates based on mussel-inspired polydopamine coating for cell imaging and tailored self-assembly. Bioconjug Chem 27:815–823

    CAS  PubMed  Google Scholar 

  25. Zhao W, Lin L, Hsing IM (2009) Rapid synthesis of DNA-functionalized gold nanoparticles in salt solution using mononucleotide-mediated conjugation. Bioconjug Chem 20:1218–1222

    CAS  PubMed  Google Scholar 

  26. Shin SW, Ahn SY, Yoon S, Wee HS, Bae JW, Lee JH, Lee WB, Um SH (2018) Differences in DNA probe-mediated aggregation behavior of gold nanomaterials based on their geometric appearance. Langmuir 34:14869–14874

    CAS  PubMed  Google Scholar 

  27. Steel AB, Levicky RL, Herne TM, Tarlov MJ (2000) Immobilization of nucleic acids at solid surfaces: effect of oligonucleotide length on layer assembly. Biophys J 79:975–981

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bhattacharjee S (2016) DLS and zeta potential—what they are and what they are not? J Control Release 235:337–351

    CAS  Google Scholar 

  29. Song J, Kim J, Hwang S, Jeon M, Jeong S, Kim C, Kim S (2016) “smart” gold nanoparticles for photoacoustic imaging: an imaging contrast agent responsive to the cancer microenvironment and signal amplification: via pH-induced aggregation. Chem Commun 52:8287–8290

    CAS  Google Scholar 

  30. Balasubramanian SK, Yang L, Yung LYL, Ong CN, Ong WY, Yu LE (2010) Characterization, purification, and stability of gold nanoparticles. Biomaterials 31:9023–9030

    CAS  PubMed  Google Scholar 

  31. Wang D, Hua H, Tang H, Yang C, Chen W, Li Y (2019) A signal amplification strategy and sensing application using single gold nanoelectrodes. Analyst 144:310–316

    CAS  Google Scholar 

  32. Scuderi G, Catara AF, Licciardello G (2019) Genotyping Citrus tristeza virus isolates by sequential multiplex RT-PCR and microarray hybridization in a Lab-on-Chip Device. Methods Mol Biol 2015:127–142

    CAS  PubMed  Google Scholar 

  33. González-Álvarez MJ, Pérez-Ruiz E, Miranda-Castro R, de-los-Santos-Álvarez N, Miranda-Ordieres AJ, Lobo-Castañón MJ (2013) Effect of tags and labels on the performance of enzyme-amplified electrochemical genomagnetic assays. Electroanalysis 25:147–153

    Google Scholar 

  34. Evtugyn G, Hianik T (2016) Electrochemical DNA sensors and aptasensors based on electropolymerized materials and polyelectrolyte complexes. TrAC - Trends Anal Chem 79:168–178

    CAS  Google Scholar 

  35. Su S, Wu Y, Zhu D et al (2016) On-electrode synthesis of shape-controlled hierarchical flower-like gold nanostructures for Effi cient interfacial DNA assembly and sensitive electrochemical sensing of microRNA. Small 12:3794–3801

    CAS  PubMed  Google Scholar 

  36. Kumar SA, Tang C, Chen S (2008) Poly(4-amino-1-1′-azobenzene-3, 4′-disulfonic acid) coated electrode for selective detection of dopamine from its interferences. Talanta 74:860–866

    CAS  PubMed  Google Scholar 

  37. Shi L, Chu Z, Liu Y, Jin W, Chen X (2013) Facile synthesis of hierarchically aloe-like gold micro/nanostructures for ultrasensitive DNA recognition. Biosens Bioelectron 49:184–191

    CAS  PubMed  Google Scholar 

  38. Zhu D, Liu W, Cao W, Chao J, Su S, Wang L, Fan C (2018) Multiple amplified electrochemical detection of microRNA-21 using hierarchical flower-like gold nanostructures combined with gold-enriched hybridization chain reaction. Electroanalysis 30:1349–1356

    CAS  Google Scholar 

  39. Lin TH, Lin CW, Liu HH, Sheu JT, Hung WH (2011) Potential-controlled electrodeposition of gold dendrites in the presence of cysteine. Chem Commun 47:2044–2046. https://doi.org/10.1039/c0cc03273e

    Article  CAS  Google Scholar 

  40. Orozco J, Suárez G, Fernández-Sánchez C, McNeil C, Jiménez-Jorquera C (2007) Characterization of ultramicroelectrode arrays combining electrochemical techniques and optical microscopy imaging. Electrochim Acta 53:729–736

    CAS  Google Scholar 

  41. Xu X, Makaraviciute A, Pettersson J, Zhang SL, Nyholm L, Zhang Z (2019) Revisiting the factors influencing gold electrodes prepared using cyclic voltammetry. Sensors Actuators B Chem 283:146–153

    CAS  Google Scholar 

  42. Trassati S, Petrii OA (1991) Real surface area measurements in electrochemistry. Pure Appl Chem 63:711–734

    Google Scholar 

  43. Orozco J, Jiménez-Jorquera C, Fernández-Sánchez C (2009) Gold nanoparticle-modified ultramicroelectrode arrays for biosensing: a comparative assessment. Bioelectrochemistry 75:176–181

    CAS  PubMed  Google Scholar 

  44. Li J, He J, Zhang C, Chen J, Mao W, Yu C (2019) Dual-type responsive electrochemical biosensor for the detection of α2,6-sialylated glycans based on AuNRs-SA coupled with c-SWCNHs/S-PtNC nanocomposites signal amplification. Biosens Bioelectron 130:166–173

    PubMed  Google Scholar 

  45. Liu A, Ren Q, Xu T, Yuan M, Tang W (2012) Morphology-controllable gold nanostructures on phosphorus doped diamond-like carbon surfaces and their electrocatalysis for glucose oxidation. Sensors Actuators B Chem 162:135–142

    CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr. Raquel E. Ocazionez from The Medical School, Centro de Investigaciones en Enfermedades Tropicales (Universidad Industrial de Santander) and Dr. Salim Mattar, Instituto de Investigaciones Biológicas del Trópico IIBT (Universidad de Cordoba), for providing us with virus isolates and serum samples from infected patients, respectively. We thank the Ruta N complex for hosting the Max Planck Tandem Groups.

Funding

The work has been funded by MINCIENCIAS, through the 111574454836 project. The support from The University of Antioquia and The Max Planck Society through the cooperation agreement 566-1, 2014 is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jahir Orozco.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 5681 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cajigas, S., Alzate, D. & Orozco, J. Gold nanoparticle/DNA-based nanobioconjugate for electrochemical detection of Zika virus. Microchim Acta 187, 594 (2020). https://doi.org/10.1007/s00604-020-04568-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04568-1

Keywords

Navigation