Skip to main content
Log in

Simultaneous electrochemical determination of ochratoxin A and fumonisin B1 with an aptasensor based on the use of a Y-shaped DNA structure on gold nanorods

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A complementary DNA (cDNA) was designed to simultaneously hybridize with the ochratoxin A (OTA) aptamer and the fumonisin B1 (FB1) aptamer to form a unique Y-shaped DNA structure and to achieve simultaneous detection. Gold nanorods (AuNRs) were used to immobilize thionine (Th), thiolated ferrocene (Fc), thiolated OTA aptamer (Apt1), and thiolated FB1 aptamer (Apt2), to form an amplified signal element and a recognition element. The Apt1-AuNRs-Th complex and the Apt2-AuNRs-Fc complex hybridize with cDNA to form a unique Y-DNA structure on a gold electrode. This produces two initial electrochemical signals [with 177 μΑ cm−2 near −0.2 V, and 3121 μΑ cm−2 near +0.46 V (vs. Ag/AgCl)] by differential pulse voltammetry. Upon addition of 0.1 ng mL−1 OTA and 0.1 ng mL−1 FB1, the aptamers bind the two toxins. This results in the release of Apt1-AuNRs-Th and Apt2-AuNRs-Fc, so the peak currents densities decrease to 115 μΑ cm−2 and 209 μΑ cm−2. The assay allows simultaneous determination of OTA and FB1 in the 1.0 pg·mL−1 to 100 ng·mL−1 concentration ranges, with LODs of 0.47 and 0.26 pg·mL−1. The assay is reproducible, stable and specific. It was applied to the determination of OTA and FB1 in spiked beer, with recoveries between 89.0% and 102.0%.

Schematic representation of OTA and FB1 detection based on Apt2-AuNRs-Fc/Apt1-AuNRs-Th/cDNA/AuE. (AuNRs: Gold nanorods; Th: thionine; Fc: ferrocene; SH: thiol; BSA: Bovine serum albumin; cDNA: Complementary DNA; Apt1: Aptamer1; Apt2: Aptamer2; OTA: Ochratoxin A; FB1: Fumonisin B1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Malvano F, Albanese D, Crescitelli A, Pilloton R, Esposito E (2016) Impedimetric label-free immunosensor on disposable modified screen-printed electrodes for Ochratoxin A. Biosensors 6(3):33

    Article  Google Scholar 

  2. Abnous K, Danesh NM, Alibolandi M, Ramezani M, Taghdisi SM (2017) Amperometric aptasensor for ochratoxin A based on the use of a gold electrode modified with aptamer, complementary DNA, SWCNTs and the redox marker methylene blue. Microchim Acta 184:1151–1159

    Article  CAS  Google Scholar 

  3. Bertero A, Moretti A, Spicer L, Caloni F (2018) Fusarium molds and mycotoxins: potential species-specific effects. Toxins 10(6):244

    Article  Google Scholar 

  4. Wang YK, Yan YX, Li SQ, Wang H, Ji WH, Sun JH (2013) Simultaneous quantitative determination of multiple mycotoxins in cereal and feedstuff samples by a suspension array immunoassay. J Agric Food Chem 61(46):10948–10953

    Article  CAS  Google Scholar 

  5. Zhang J, Xia YK, Chen M, Wu DZ, Cai SX, Liu MM, He WH, Chen JH (2016) A fluorescent aptasensor based on DNA-scaffolded silver nanoclusters coupling with Zn(II)-ion signal-enhancement for simultaneous detection of OTA and AFB1. Sensors Actuators B Chem 235:79–85

    Article  CAS  Google Scholar 

  6. Duan H, Li Y, Shao YN, Huang XL, Xiong YH (2019) Multicolor quantum dot nanobeads for simultaneous multiplex immunochromatographic detection of mycotoxins in maize. Sensors Actuators B Chem 291:411–417

    Article  CAS  Google Scholar 

  7. Reverté L, Prieto-Simón B, Campàs M (2016) New advances in electrochemical biosensors for the detection of toxins: nanomaterials, magnetic beads and microfluidics systems. A review. Anal Chim Acta 908:8–21

    Article  Google Scholar 

  8. Goud KY, Kalisa SK, Kumar V, Tsang YF, Lee S, Gobi KV, Kim KH (2018) Progress on nanostructured electrochemical sensors and their recognition elements for detection of mycotoxins: a review. Biosens Bioelectron 121:205–222

    Article  CAS  Google Scholar 

  9. Lu L, Gunasekaran S (2018) Dual-channel ITO-microfluidic electrochemical immunosensor for simultaneous detection of two mycotoxins. Talanta 194:709–716

    Article  Google Scholar 

  10. Hou SL, Ma ZE, Meng H, Xu Y, He QH (2018) Ultrasensitive and green electrochemical immunosensor for mycotoxin ochratoxin A based on phage displayed mimotope peptide. Talanta 194:919–924

    Article  Google Scholar 

  11. Vidal JC, Bertolín JR, Ezquerra A, Hernández S, Castillo J (2017) Rapid simultaneous extraction and magnetic particle-based enzyme immunoassay for the parallel determination of ochratoxin A, fumonisin B1 and deoxynivalenol mycotoxins in cereal samples. Anal Methods 9:3602–3611

    Article  CAS  Google Scholar 

  12. Wang C, Qian J, An K, Huang X, Zhao L, Liu Q, Hao N, Wang K (2017) Magneto-controlled aptasensor for simultaneous electrochemical detection of dual mycotoxins in maize using metal sulfide quantum dots coated silica as labels. Biosens Bioelectron 89:802–809

    Article  CAS  Google Scholar 

  13. Yan Z, Gan N, Li T, Cao Y, Chen Y (2016) A sensitive electrochemical aptasensor for multiplex antibiotics detection based on high-capacity magnetic hollow porous nanotracers coupling exonuclease-assisted cascade target recycling. Biosens Bioelectron 78:51–57

    Article  CAS  Google Scholar 

  14. Zhu X, Kou F, Xu H, Han Y, Yang G, Huang X, Chen W, Chi Y, Lin Z (2018) Label-free ochratoxin A electrochemical aptasensor based on target-induced noncovalent assembly of peroxidase-like graphitic carbon nitride nanosheet. Sensors Actuators B Chem 270:263–269

    Article  CAS  Google Scholar 

  15. Abnous K, Danesh NM, Alibolandi M, Ramezani M, Sarreshtehdar Emrani A, Zolfaghari R, Taghdisi SM (2017) A new amplified π-shape electrochemical aptasensor for ultrasensitive detection of aflatoxin B1. Biosens Bioelectron 94:374–379

    Article  CAS  Google Scholar 

  16. Taghdisi SM, Danesh NM, Nameghi MA, Ramezani M, Alibolandi M, Abnous K (2019) An electrochemical sensing platform based on ladder-shaped DNA structure and label-free aptamer for ultrasensitive detection of ampicillin. Biosens Bioelectron 133:230–235

    Article  CAS  Google Scholar 

  17. Taghdisi SM, Danesh NM, Ramezani M, Abnous K (2016) A novel M-shape electrochemical aptasensor for ultrasensitive detection of tetracyclines. Biosens Bioelectron 85:509–514

    Article  CAS  Google Scholar 

  18. Wang JF, Wang Y, Liu S, Wang HW, Zhang X, Song XL, Yu JH, Huang JD (2019) Primer remodeling amplification-activated multisite-catalytic hairpin assembly enabling the concurrent formation of Y-shaped DNA nanotorches for the fluorescence assay of ochratoxin A. Analyst 144:3389

    Article  CAS  Google Scholar 

  19. Wei M, Zhang WY (2018) Ultrasensitive aptasensor with DNA tetrahedral nanostructure for ochratoxin A detection based on hemin/G-quadruplex catalyzed polyaniline deposition. Sensors Actuators B Chem 276:1–7

    Article  CAS  Google Scholar 

  20. Zhang H, Sun Y, Wang J, Zhang J, Zhang HQ, Zhou H, Song DQ (2012) Preparation and application of novel nanocomposites of magnetic-au nanorod in SPR biosensor. Biosens Bioelectron 34:137–143

    Article  Google Scholar 

  21. Du X, Dai L, Jiang D, Li H, Hao N, You T, Mao H, Wang K (2017) Gold nanrods plasmon-enhanced photoelectrochemical aptasensing based on hematite/N-doped graphene films for ultrasensitive analysis of 17β-estradiol. Biosens Bioelectron 91:706–713

    Article  CAS  Google Scholar 

  22. Wen W, Huang JY, Bao T, Zhou J, Xia HX, Zhang XH, Wang SF, Zhao YD (2016) Increased electrocatalyzed performance through hairpin oligonucleotide aptamer-functionalized gold nanorods labels and graphene-strept avidin nanomatrix: highly selective and sensitive electrochemical biosensor of carcinoembryonic antigen. Biosens Bioelectron 83:142–148

    Article  CAS  Google Scholar 

  23. Yang H, Liu A, Wei M, Liu Y, Lv B, Wei W, Zhang Y, Liu S (2017) Visual, label-free telomerase activity monitor via enzymatic etching of gold nanorods. Anal Chem 89:12094–12100

    Article  CAS  Google Scholar 

  24. Jin HL, Zhang ML, Wei M, Cheng J-H (2019) A voltammetric biosensor for mercury(II) using reduced graphene oxide@gold nanorods and thymine-hg(II)-thymine interaction. Microchim Acta 186:264

    Article  Google Scholar 

  25. Wu S, Duan N, Ma X, Xia Y, Wang H, Wang Z, Zhang Q (2012) Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Anal Chem 84:6263–6270

    Article  CAS  Google Scholar 

  26. Yang Y, Li W, Shen P, Liu R, Li Y, Xu J, Zheng Q, Zhang Y, Li J, Zheng T (2017) Aptamer fluorescence signal recovery screening for multiplex mycotoxins in cereal samples based on photonic crystal microsphere suspension array. Sensors Actuators B Chem 248:351–358

    Article  CAS  Google Scholar 

  27. Molinero-Fernández Á, Moreno-Guzmán M, López MÁ, Escarpa A (2017) Biosensing strategy for simultaneous and accurate quantitative analysis of mycotoxins in food samples using unmodified graphene micromotors. Anal Chem 89:10850–10857

    Article  Google Scholar 

  28. Liu R, Li W, Cai TT, Deng Y, Ding Z, Liu Y, Zhu XR, Wang X, Liu J, Liang BW, Zheng TS, Li JL (2018) TiO2 nanolayer-enhanced fluorescence for simultaneous multiplex mycotoxin detection by aptamer microarrays on a porous silicon surface. ACS Appl Mater Interfaces 10:14447–14453

    Article  CAS  Google Scholar 

  29. Niazi S, Khan IM, Yan L, Khan MI, Mohsin A, Duan N, Wu S, Wang Z (2019) Simultaneous detection of fumonisin B1 and ochratoxin A using dual-color, time-resolved luminescent nanoparticles (NaYF4:Ce, Tb and NH2-Eu/DPA@SiO2) as labels. Anal Bioanal Chem 411:1453–1465

    Article  CAS  Google Scholar 

  30. Oswald S, Karsunke XYZ, Dietrich R, Märtlbauer E, Niessner R, Knopp D (2013) Automated regenerable microarray-based immunoassay for rapid parallel quantification of mycotoxins in cereals. Anal Bioanal Chem 405:6405–6415

    Article  CAS  Google Scholar 

  31. Wang X, Zhang H, Liu H, He C, Zhang A, Ma J, Ma Y, Wu W, Zheng H (2011) An immunoarray for the simultaneous detection of two mycotoxins, ochratoxin A and fumonisin B1. J Food Saf 31:408–416

    Article  Google Scholar 

  32. Chen W, Yan C, Cheng L, Yao L, Xue F, Xu J (2018) An ultrasensitive signal-on electrochemical aptasensor for ochratoxin A determination based on DNA controlled layer-by-layer assembly of dual gold nanoparticle conjugates. Biosens Bioelectron 117:845–851

    Article  CAS  Google Scholar 

  33. Xiao Q, Feng J, Feng M, Li J, Liu Y, Wang D, Huang S (2019) A ratiometric electrochemical aptasensor for ultrasensitive determination of adenosine triphosphate via a triple-helix molecular switch. Microchim Acta 186:478

    Article  Google Scholar 

  34. Xiao Q, Feng J, Li J, Liu Y, Wang D, Huang S (2019) Ratiometric electrochemical biosensor for ultrasensitive and highly selective detection of K-ras gene via exonuclease III-assisted target recycling and rolling circle amplification strategies. Anal Methods 11(32):4146–4156

    Article  CAS  Google Scholar 

  35. Hayat A, Sassolas A, Marty J-L, Radi A-E (2013) Highly sensitive ochratoxin A impedimetric aptasensor based on the immobilization of azido-aptamer onto electrografted binary film via click chemistry. Talanta 103:14–19

    Article  CAS  Google Scholar 

  36. De Girolamo A, McKeague M, Miller JD, DeRosa MC, Visconti A (2011) Determination of ochratoxin A in wheat after clean-up through a DNA aptamer-based solid phase extraction column. Food Chem 127:1378–1384

    Article  Google Scholar 

  37. Cui L, Lu M, Li Y, Tang B, Zhang C-Y (2018) A reusable ratiometric electrochemical biosensor on the basis of the binding of methylene blue to DNA with alternating AT base sequence for sensitive detection of adenosine. Biosens Bioelectron 102:87–93

    Article  CAS  Google Scholar 

  38. Rivas L, Mayorga-Martinez CC, Quesada-Gonzalez D, Zamora-Galvez A, Escosura-Muniz A, Merkoci A (2015) Label-free impedimetric aptasensor for ochratoxin A detection using iridium oxide nanoparticles. Anal Chem 87:5167–5172

    Article  CAS  Google Scholar 

  39. Wu SS, Wei M, Wei W, Liu Y, Liu SQ (2019) Electrochemical aptasensor for aflatoxin B1 based on smart host-guest recognition of β-cyclodextrin polymer. Biosens Bioelectron 129:58–63

    Article  CAS  Google Scholar 

  40. Wei M, Wang CL, Xu ES, Chen J, Xu XL, Wei W, Liu SQ (2019) A simple and sensitive electrochemiluminescence aptasensor for determination of ochratoxin A based on a nicking endonuclease-powered DNA walking machine. Food Chem 282:141–146

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Key Research and Development Program of China (2018YFC1602800),the Natural Science Foundation of Henan Province (182300410188), the Fundamental Research Funds for the Henan Provincial Colleges and Universities in Henan University of Technology (2016RCJH04), and Key Scientific and Technological Project of Henan Province (192102310255).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 291 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, M., Xin, L., Feng, S. et al. Simultaneous electrochemical determination of ochratoxin A and fumonisin B1 with an aptasensor based on the use of a Y-shaped DNA structure on gold nanorods. Microchim Acta 187, 102 (2020). https://doi.org/10.1007/s00604-019-4089-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4089-y

Keywords

Navigation