Skip to main content
Log in

Core-shell hollow spheres of type C@MoS2 for use in surface-assisted laser desorption/ionization time of flight mass spectrometry of small molecules

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Mesoporous carbon hollow spheres coated with MoS2 (C@MoS2) were synthesized to obtain a material with large specific surface area, fast electron transfer efficiency and good water dispersibility. The composite material was applied as a matrix for the analysis of small molecules by surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-TOF MS). The use of a core-shell C@MoS2 matrix strongly reduces matrix background interferences and increases signal intensity in the analysis of sulfonamides antibiotics (SAs), cationic dyes, emodin, as well as estrogen and amino acids. The composite material was applied to the SALDI-TOF MS analysis of selected molecules in (spiked) real samples. The ionization mechanism of the core-shell C@MoS2 as a matrix is discussed. The method exhibits low fragmentation interference, excellent ionization efficiency, high reproducibility and satisfactory salt tolerance.

Schematic representation of the method for fabrication of MoS2-coated mesoporous carbon hollow spheres (core-shell C@MoS2). As a new matrix, the nanocomposites were applied to analysis of small molecules by surface-assisted laser desorption/ionization time-of-flight mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reiding KR, Blank D, Kuijper DM, Deelder AM, Wuhrer M (2014) High-throughput profiling of protein N-glycosylation by MALDI-TOF-MS employing linkage-specific sialic acid esterification. Anal Chem 86:5784–5793. https://doi.org/10.1021/ac500335t

    Article  CAS  PubMed  Google Scholar 

  2. Chen HM, Deng CH, Zhan XM (2009) Synthesis of Fe3O4@SiO2@PMMA core–shell–shell magnetic microspheres for highly efficient enrichment of peptides and proteins for MALDI-TOF MS analysis. Angew Chem Int Edit 122:617–621. https://doi.org/10.1002/anie.200904885

    Article  CAS  Google Scholar 

  3. Zhou X, Wei Y, He Q, Boey F, Zhang Q, Zhang H (2010) Reduced graphene oxide films used as matrix of MALDI-TOF-MS for detection of octachlorodibenzo-p-dioxin. Chem Commun 46:6974–6976. https://doi.org/10.1039/c0cc01681k

    Article  CAS  Google Scholar 

  4. Shi CY, Meng JR, Deng CH (2012) Enrichment and detection of small molecules using magnetic graphene as an adsorbent and a novel matrix of MALDI-TOF-MS. Chem Commun 48:2418–2420. https://doi.org/10.1039/c2cc17696c

    Article  CAS  Google Scholar 

  5. Min QH, Zhang XX, Chen XQ, Li S, Zhu J-J (2014) N-doped graphene: An alternative carbon-based matrix for highly efficient detection of small molecules by negative ion MALDI-TOF MS. Anal Chem 86:9122–9130. https://doi.org/10.1021/ac501943n

    Article  CAS  PubMed  Google Scholar 

  6. Wang YM, Gao D, Chen YL, Hu GN, Liu HX, Jiang YY (2016) Development of N,S-doped carbon dots as a novel matrix for the analysis of small molecules by negative ion MALDI-TOF MS. RSC Adv 6:79043–79049. https://doi.org/10.1039/c6ra12131d

    Article  CAS  Google Scholar 

  7. Gao C, Zhen DS, He N, An ZB, Zhou QL, Li CY, Grimes CA, Cai QY (2019) Two-dimensional TiO2 nanoflakes enable rapid SALDI-TOF-MS detection of toxic small molecules (dyes and their metabolites) in complex environments. Talanta 196:1–8. https://doi.org/10.1016/j.talanta.2018.11.104

    Article  CAS  PubMed  Google Scholar 

  8. Li XS, Wu JH, Xu LD, Zhao Q, Luo YB, Yuan BF, Feng YQ (2011) A magnetite/oxidized carbon nanotube composite used as an adsorbent and a matrix of MALDI-TOF-MS for the determination of Benzo[a]pyrene. Chem Commun 47:9816–9818. https://doi.org/10.1039/c1cc13166d

    Article  CAS  Google Scholar 

  9. Liu Q, Cheng MT, Wang J, Jiang GB (2015) Graphene oxide nanoribbons: improved synthesis and application in MALDI mass spectrometry. Chem-Eur J 21:5594–5599. https://doi.org/10.1002/chem.201406280

    Article  CAS  PubMed  Google Scholar 

  10. Sangsuwan A, Narupai B, Sae-ung P, Rodtamai S, Rodthongkum N, Hoven VP (2015) Patterned poly(acrylic acid) brushes containing gold nanoparticles for peptide detection by surface-assisted laser desorption/ionization mass spectrometry. Anal Chem 87:10738–10746. https://doi.org/10.1021/acs.analchem.5b00734

    Article  CAS  PubMed  Google Scholar 

  11. Abdelhamid HN (2018) Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes. Microchim Acta 185:200–215. https://doi.org/10.1007/s00604-018-2687-8

    Article  CAS  Google Scholar 

  12. Sun NR, Wang JW, Yao JZ, Deng CH (2017) Hydrophilic mesoporous silica materials for highly specific enrichment of N-linked glycopeptide. Anal Chem 89:1764–1771. https://doi.org/10.1021/acs.analchem.6b04054

    Article  CAS  PubMed  Google Scholar 

  13. Bibi A, Ju HX (2016) Efficient enrichment of glycopeptides with sulfonic acid-functionalized mesoporous silica. Talanta 161:681–685. https://doi.org/10.1016/j.talanta.2016.09.012

    Article  CAS  PubMed  Google Scholar 

  14. Lin Z, Cai ZW (2018) Negative ion laser desorption/ionization time-of-flight mass spectrometric analysis of small molecules by using nanostructured substrate as matrices. Mass Spectrom Rev 37:681–696. https://doi.org/10.1002/mas.21558

    Article  CAS  PubMed  Google Scholar 

  15. Kim JI, Parka JM, Noha JY, Hwang SJ, Kang MJ, Pyun JC (2016) Analysis of benzylpenicillin in milk using MALDI-TOF mass spectrometry with top-down synthesized TiO2 nanowires as the solid matrix. Chemosphere 143:64–70. https://doi.org/10.1016/j.chemosphere.2015.04.002

    Article  CAS  PubMed  Google Scholar 

  16. Abdelhamid HN, Lin YH, Wu HF (2017) Thymine chitosan nanomagnets for specific preconcentration of mercury(II) prior to analysis using SELDI-MS. Microchim Acta 184:1517–1527. https://doi.org/10.1007/s00604-017-2125-3

    Article  CAS  Google Scholar 

  17. Abdelhamid HN, Lin YH, Wu HF (2017) Magnetic nanoparticle modified chitosan for surface enhanced laser desorption/ionization mass spectrometry of surfactants. RSC Adv 7:41585–41592. https://doi.org/10.1039/C7RA05982E

    Article  CAS  Google Scholar 

  18. Abdelhamid HN, Chen ZY, Wu HF (2017) Surface tuning laser desorption/ionization mass spectrometry (STLDI-MS) for the analysis of small molecules using quantum dots. Anal Bioanal Chem 409:4943–4950. https://doi.org/10.1007/s00216-017-0433-4

    Article  CAS  PubMed  Google Scholar 

  19. Sun J, Chen SM, Liu HH, Xiong CQ, Wang JY, Xie XB, Xue JJ, Chen PL, Nie ZX (2016) Fluorographene nanosheets: a new carbon-based matrix for the detection of small molecules by MALDI-TOF MS. RSC Adv 6:99714–99719. https://doi.org/10.1039/c6ra21083j

    Article  CAS  Google Scholar 

  20. Wang J, Liu Q, Liang Y, Jiang GB (2016) Recent progress in application of carbon nanomaterials in laser desorption/ionization mass spectrometry. Anal Bioanal Chem 408:2861–2873. https://doi.org/10.1007/s00216-015-9255-4

    Article  CAS  PubMed  Google Scholar 

  21. Zhao YJ, Tang MM, Liao QB, Li ZM, Li H, Xi K, Tan L, Zhang M, Xu DK, Chen HY (2018) Disposable MoS2 -arrayed MALDI MS chip for high-throughput and rapid quantification of sulfonamides in multiple real samples. ACS sensors 3:806–814. https://doi.org/10.1021/acssensors.8b00051

    Article  CAS  PubMed  Google Scholar 

  22. Lu MH, Yang XQ, Yang YX, Qin P, Wu XR, Cai ZW (2017) Nanomaterials as assisted matrix of laser desorption/ionization time-of-flight mass spectrometry for the analysis of small molecules. Nanomaterials 7:87–107. https://doi.org/10.3390/nano7040087

    Article  CAS  PubMed Central  Google Scholar 

  23. Mandal A, Singha M, Addy PS, Basak A (2019) Laser desorption ionization mass spectrometry: recent progress in matrix-free and label-assisted technique. Mass spectrum Rev 38:3–21. https://doi.org/10.1002/mas.21545

    Article  CAS  Google Scholar 

  24. Zheng LP, Xing T, Ouyang YH, Wang Y, Wang XY (2019) Core-shell structured MoS2@mesoporous hollow carbon spheres nanocomposite for supercapacitors applications with enhanced capacitance and energy density. Electrochim Acta 298:630–639. https://doi.org/10.1016/j.electacta.2018.12.126

    Article  CAS  Google Scholar 

  25. Zhao YJ, Deng GQ, Liu XH, Sun L, Li H, Cheng Q, Xi K, Xu DK (2016) MoS2/Ag nanohybrid: a novel matrix with synergistic effect for small molecule drugs analysis by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chim Acta 937:87–95. https://doi.org/10.1016/j.aca.2016.06.026

    Article  CAS  PubMed  Google Scholar 

  26. Ni LB, Zhao GJ, Yang G, Niu GS, Chen M, Diao GW (2018) Dual core-shell-structured S@C@MnO2 nanocomposite for highly stable lithium−sulfur batteries. ACS Appl Mater Inter 9:34793–34803. https://doi.org/10.1021/acsami.7b07996

    Article  CAS  Google Scholar 

  27. Wang Y, Jiao WB, Wang JT, Liu GF, Cao HL, Lu J (2019) Amino–functionalized biomass–derived porous carbons with enhanced aqueous adsorption affinity and sensitivity of sulfonamide antibiotics. Bioresour Technol 277:128–135. https://doi.org/10.1016/j.biortech.2019.01.033

    Article  CAS  PubMed  Google Scholar 

  28. Ji YF, Lu JH, Wang L, Jiang MD, Yang Y, Yang PZ, Zhou L, Ferronato C, Chovlon JM (2018) Non-activated peroxymonosulfate oxidation of sulfonamide antibiotics in water: kinetics, mechanisms, and implications for water treatment. Water Res 147:82–90. https://doi.org/10.1016/j.watres.2018.037

    Article  CAS  PubMed  Google Scholar 

  29. Liu HL, Sun RX, Feng SY, Wang DX, Liu HZ (2019) Rapid synthesis of a silsesquioxane-based disulfide-linked polymer for selective removal of cationic dyes from aqueous solutions. Chem Eng J 359:436–445. https://doi.org/10.1016/j.cej.2018.11.148

    Article  CAS  Google Scholar 

  30. Lin LF, Liu YL, Fu S, Qu CH, Li H, Ni J (2019) Inhibition of mitochondrial complex function-the hepatotoxicity mechanism of emodin based on quantitative proteomic analyses. Cell 8:263–279. https://doi.org/10.3390/cells8030263

    Article  CAS  Google Scholar 

  31. Chen YS, Ding J, He XM, Xu J, Feng YQ (2018) Synthesis of tellurium nanosheet for use in matrix assisted laser desorption/ionization time-of-flight mass spectrometry of small molecules. Microchim Acta 185:368–376. https://doi.org/10.1007/s00604-018-2882-7

    Article  CAS  Google Scholar 

  32. Yang HM, Su R, Wishnok JS, Liu N, Chen CB, Liu SY, Tannenbaum SR (2019) Magnetic silica nanoparticles for use in matrix-assisted laser desorption ionization mass spectrometry of labile biomolecules such as oligosaccharides, amino acids, peptides and nucleosides. Microchim Acta 186:104–112. https://doi.org/10.1007/s00604-018-3208-5

    Article  CAS  Google Scholar 

  33. Xie JF, Zhang H, Li S, Wang RX, Sun X, Zhou M, Zhou JF, Lou XW, Xie Y (2013) Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electerocatalytic hydrogen evolution. Adv mater 25: 5807-5813. 10.1002./adma.201302685

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The National Key Research and Development Program of China (2018YFC1603500), Natural Science Foundation of Shandong Province (ZR2017MB011), Key R&D Program of Shandong Province (2019GSF111009, 2019GSF111001), Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS(NSKF201813), the Special Grant for High-Level Overseas Talents of Shandong Academy of Sciences, Youth Science Funds of Shandong Academy of Sciences (2019QN008,2019QN009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangfeng Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1677 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Xie, H., Zhao, M. et al. Core-shell hollow spheres of type C@MoS2 for use in surface-assisted laser desorption/ionization time of flight mass spectrometry of small molecules. Microchim Acta 186, 830 (2019). https://doi.org/10.1007/s00604-019-3960-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3960-1

Keywords

Navigation