Skip to main content
Log in

Extraction of aflatoxins by using mesoporous silica (type UVM-7), and their quantitation by HPLC-MS

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A solid-phase extraction procedure has been developed by using a sorbent derived from UVM-7 mesoporous silica. The sorbent was applied to the extraction of aflatoxins B1, B2, G1 and G2 from tea samples followed by HPLC with mass spectrometric detection. The sorbent was characterized by transmission electron microscopy, nuclear magnetic resonance, X-ray diffraction and nitrogen adsorption-desorption. UVM-7 is found to be the best solid phase. The amount of solid-phase, type and volume of eluent, pH value and ionic strength and breakthrough volume were optimized. Following the recommended procedure, recoveries between 96.0 and 98.2% were achieved, with RSD values of <5.1%, and the limits of detection are in the range from 0.14 to 0.7 μg·kg−1. The material is reusable. The method was applied to the analysis of real tea samples. A low matrix effect is found, and recoveries are >88%. The results were compared with those obtained by immunoaffinity columns as a reference method. Only low concentrations of aflatoxin G2 were found in some samples, and results obtained with both methods are shown to be statistically sound and comparable.

Schematic representation of a mesoporous silica sorbent (type UVM-7) for the extraction of aflatoxins (AF) from tea by solid-phase extraction (SPE), and its determination by liquid chromatography. The morphology of the material allows to retain the analytes very well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pankaj SK, Shi H, Keener KM (2018) A review of novel physical and chemical decontamination technologies for aflatoxin in food. Trends Food Sci Technol 71:73–83. https://doi.org/10.1016/j.tifs.2017.11.007

    Article  CAS  Google Scholar 

  2. Alshannaq A, Yu JH (2017) Occurrence, toxicity, and analysis of major mycotoxins in food. Int J Environ Res Public Health 14:632–652. https://doi.org/10.3390/ijerph14060632

    Article  CAS  PubMed Central  Google Scholar 

  3. Zhou N-Z, Liu P, Su X-C et al (2017) Low-cost humic acid-bonded silica as an effective solid-phase extraction sorbent for convenient determination of aflatoxins in edible oils. Anal Chim Acta 970:38–46. https://doi.org/10.1016/j.aca.2017.02.029

    Article  CAS  PubMed  Google Scholar 

  4. European Comission Regulation (EC) (2006) Setting maximum levels for certain contaminants in foodstuffs. Off J Eur Union L365:5–24

    Google Scholar 

  5. Comité Científico de la Agencia Española de Seguridad Alimentaria y Nutrición (2011) Informe del Comité Científico de la Agencia Española de Seguridad Alimentaria y Nutrición (AESAN) en relación al efecto sobre la población española de la derogación de la normativa nacional sobre límite màximos permitidos para las aflatoxinas B1, B2, G1 y G2 en alimentos. Rev del Com Científico 14:27–42

    Google Scholar 

  6. Pagkali V, Petrou PS, Makarona E et al (2018) Simultaneous determination of a fl atoxin B1, fumonisin B1 and deoxynivalenol in beer samples with a label-free monolithically integrated optoelectronic biosensor. J Hazard Mater 359:445–453. https://doi.org/10.1016/j.jhazmat.2018.07.080

    Article  CAS  PubMed  Google Scholar 

  7. Du L-J, Chu C, Warner E et al (2018) Rapid microwave-assisted dispersive micro-solid phase extraction of mycotoxins in food using zirconia nanoparticles. J Chromatogr A 1561:1–12. https://doi.org/10.1016/j.chroma.2018.05.031

    Article  CAS  PubMed  Google Scholar 

  8. Pascari X, Ramos AJ, Marín S, Sanchís V (2018) Mycotoxins and beer. Impact of beer production process on mycotoxin contamination. A review. Food Res Int 103:121–129. https://doi.org/10.1016/j.foodres.2017.07.038

    Article  CAS  PubMed  Google Scholar 

  9. Okaru AO, Abuga KO, Kibwage IO et al (2017) Aflatoxin contamination in unrecorded beers from Kenya - a health risk beyond ethanol. Food Control 79:344–348. https://doi.org/10.1016/j.foodcont.2017.04.006

    Article  CAS  Google Scholar 

  10. Pouretedal Z, Mazaheri M (2013) Aflatoxins in black tea in Iran. Food Addit Contam Part B 6:127–129. https://doi.org/10.1080/19393210.2013.764551

    Article  CAS  Google Scholar 

  11. Martínez-Domínguez G, Romero-González R, Garrido Frenich A (2016) Multi-class methodology to determine pesticides and mycotoxins in green tea and royal jelly supplements by liquid chromatography coupled to Orbitrap high resolution mass spectrometry. Food Chem 197:907–915. https://doi.org/10.1016/j.foodchem.2015.11.070

    Article  CAS  PubMed  Google Scholar 

  12. Ma F, Chen R, Li P et al (2013) Preparation of an immunoaffinity column with amino-silica gel microparticles and its application in sample cleanup for aflatoxin detection in Agri-products. Molecules 18:2222–2235. https://doi.org/10.3390/molecules18022222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun S, Yao K, Zhao S et al (2018) Determination of aflatoxin and zearalenone analogs in edible and medicinal herbs using a group-specific immunoaffinity column coupled to ultra-high-performance liquid chromatography with tandem mass spectrometry. J Chromatogr B 1092:228–236. https://doi.org/10.1016/j.jchromb.2018.06.012

    Article  CAS  Google Scholar 

  14. Bi B, Bao J, Xi G et al (2018) Determination of multiple mycotoxin residues in Panax ginseng using simultaneous UPLC-ESI-MS/MS. J Food Saf 38:e12458. https://doi.org/10.1111/jfs.12458

    Article  CAS  Google Scholar 

  15. Saha A, Gajbhiye NA, Basak BB, Manivel P (2018) High-performance liquid chromatography tandem mass spectrometry for simultaneous detection of aflatoxins B1, B2, G1 and G2 in Indian medicinal herbs using QuEChERS-based extraction procedure. Int J Environ Anal Chem 98:622–643. https://doi.org/10.1080/03067319.2018.1485902

    Article  CAS  Google Scholar 

  16. Ventura M, Gómez A, Anaya I et al (2004) Determination of aflatoxins B1, G1, B2 and G2 in medicinal herbs by liquid chromatography–tandem mass spectrometry. J Chromatogr A 1048:25–29. https://doi.org/10.1016/j.chroma.2004.07.033

    Article  CAS  PubMed  Google Scholar 

  17. Ministerio de Relaciones con las Cortes y de la Secretaría del Gobierno (1988) Límites máximos permitidos de las aflatoxinas B1, B2, G1 y G2, en alimentos para consumo humano. BOE 121:15329

    Google Scholar 

  18. Xie L, Chen M, Ying Y (2016) Development of methods for determination of aflatoxins. Crit Rev Food Sci Nutr 56:2642–2664. https://doi.org/10.1080/10408398.2014.907234

    Article  CAS  PubMed  Google Scholar 

  19. Stroka J, Ankalm E, Jörissen U, Gilbert J (2000) Immunoaffinity column cleanup with liquid chromatography using post-column bromination for determination of aflatoxins in peanut butter, pistachio paste, fig paste, and paprika powder: collaborative study. J AOAC Int 83:320–340

    CAS  PubMed  Google Scholar 

  20. Liu H, Luan Y, Lu A et al (2018) An oligosorbent-based aptamer affinity column for selective extraction of aflatoxin B2 prior to HPLC with fluorometric detection. Microchim Acta 185:71. https://doi.org/10.1007/s00604-017-2591-7

    Article  CAS  Google Scholar 

  21. Cabrera S, El Haskouri J, Guillem C et al (2000) Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sci 2:405–420. https://doi.org/10.1016/S1293-2558(00)00152-7

    Article  CAS  Google Scholar 

  22. Weller A, Carrasco-Correa EJ, Belenguer-Sapiña C et al (2017) Organo-silica hybrid capillary monolithic column with mesoporous silica particles for separation of small aromatic molecules. Microchim Acta 184:3799–3808. https://doi.org/10.1007/s00604-017-2404-z

    Article  CAS  Google Scholar 

  23. Casado N, Pérez-Quintanilla D, Morante-Zarcero S, Sierra I (2017) Current development and applications of ordered mesoporous silicas and other sol–gel silica-based materials in food sample preparation for xenobiotics analysis. Trends Anal Chem 88:167–184. https://doi.org/10.1016/j.trac.2017.01.001

    Article  CAS  Google Scholar 

  24. El Haskouri J, Morales JM, Ortiz de Zárate D et al (2008) Nanoparticulated silicas with bimodal porosity: chemical control of the pore sizes. Inorg Chem 47:8267–8277. https://doi.org/10.1021/ic800893a

    Article  CAS  PubMed  Google Scholar 

  25. Pérez-Cabero M, Esteve-Turrillas FA, Beltrán D, Amorós P (2010) Hierarchical porous carbon with designed pore architecture and study of its adsorptive properties. Solid State Sci 12:15–25. https://doi.org/10.1016/j.solidstatesciences.2009.09.017

    Article  CAS  Google Scholar 

  26. Shirkhanloo H, Davari Ahranjani S (2018) A lead analysis based on amine functionalized bimodal mesoporous silica nanoparticles in human biological samples by ultrasound assisted-ionic liquid trap-micro solid phase extraction. J Pharm Biomed Anal 157:1–9. https://doi.org/10.1016/j.jpba.2018.05.004

    Article  CAS  PubMed  Google Scholar 

  27. Pellicer-Castell E, Belenguer-Sapiña C, Amorós P et al (2018) Study of silica-structured materials as sorbents for organophosphorus pesticides determination in environmental water samples. Talanta 189:560–567. https://doi.org/10.1016/j.talanta.2018.07.044

    Article  CAS  PubMed  Google Scholar 

  28. Martínez Pérez-Cejuela H, Ten-Doménech I, El Haskouri J et al (2018) Solid-phase extraction of phospholipids using mesoporous silica nanoparticles: application to human milk samples. Anal Bioanal Chem 410:4847–4854. https://doi.org/10.1007/s00216-018-1121-8

    Article  CAS  PubMed  Google Scholar 

  29. Ortiz de Zárate D, Fernández L, Beltrán A et al (2008) Expanding the atrane route: generalized surfactant-free synthesis of mesoporous nanoparticulated xerogels. Solid State Sci 10:587–601. https://doi.org/10.1016/j.solidstatesciences.2007.10.014

    Article  CAS  Google Scholar 

  30. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69. https://doi.org/10.1109/ICOSP.2006.345929

    Article  Google Scholar 

  31. Iller RK (1979) The chemistry of silica. Wiley, New York

    Google Scholar 

  32. Olivieri AC, Faber NM, Ferré J et al (2006) Uncertainty estimation and figures of merit for multivariate calibration (IUPAC technical report). Pure Appl Chem 78:633–661. https://doi.org/10.1351/pac200678030633

    Article  CAS  Google Scholar 

  33. Harris DC (2007) Statistics. In: Quantitative chemical analysis, 6th edn. W. H. Freeman and Company, New York, pp 61–79

    Google Scholar 

  34. Cornell WD, Cieplak P, Bayly CI et al (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197. https://doi.org/10.1021/ja00124a002

    Article  CAS  Google Scholar 

  35. Allouche A-R (2010) Software news and updates. Gabedit - graphical user interface for computational chemistry softwares. J Comput Chem 32:174–182. https://doi.org/10.1002/jcc.21600

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the MINECO of Spain and FEDER (MAT2015–64139-C4-2-R, RTI2018-095536-B-I00 and RTI2018-100910-B-C44) and the Generalitat Valenciana (PROMETEO/2016/145). E. P-C thanks the MEC for a FPU grant for Ph.D. studies (FPU16/02358). C. B-S thanks Universitat de València for a grant for Ph.D. studies (INV_PREDOC17F1-540310). V.J.B thanks the MEC for the FPI grant (BES-2017-081521) related with the project FIS2016-77889-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adela R. Mauri-Aucejo.

Ethics declarations

Conflict of interest

The authors declare that they have not conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1437 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pellicer-Castell, E., Belenguer-Sapiña, C., Borràs, V.J. et al. Extraction of aflatoxins by using mesoporous silica (type UVM-7), and their quantitation by HPLC-MS. Microchim Acta 186, 792 (2019). https://doi.org/10.1007/s00604-019-3958-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3958-8

Keywords

Navigation